cavis/libnd4j/include/ops/declarable/platform/mkldnn/batchnorm.cpp

742 lines
31 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
* Copyright (c) 2019 Konduit K.K.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author saudet
// @author raver119@gmail.com
// @author Yurii Shyrma (iuriish@yahoo.com)
//
#include <ops/declarable/PlatformHelper.h>
#include <ops/declarable/OpRegistrator.h>
#include <system/platform_boilerplate.h>
#include <helpers/MKLDNNStream.h>
#include "mkldnnUtils.h"
#include <ops/declarable/helpers/convolutions.h>
#include <array/NDArrayFactory.h>
namespace sd {
namespace ops {
namespace platforms {
//////////////////////////////////////////////////////////////////////////
static void batchnormMKLDNN(const NDArray* x, const NDArray* mean, const NDArray* variance, const NDArray* weights, NDArray* z,
const float epsilon, const bool isNCHW) {
// unfortunately mkl dnn doesn't support any format (dnnl::memory::format_tag::any) for x
// x -> 2D:nc, 4D:nchw/nhwc, 5D:ncdhw/ndhwc
// mean -> 1D [c]
// variance -> 1D [c]
// weights 2D [2, c], weights({0,1, 0,0}) contains gamma and weights({1,2, 0,0}) contains beta
// z(output) - same shape as x
const int xRank = x->rankOf();
// input type
dnnl::memory::data_type type = dnnl::memory::data_type::f32;
// indicate whether gamma or/and beta are given
auto flags = dnnl::normalization_flags::use_global_stats; // don't calculate the mean and variance for each mini-batch
if (weights != nullptr)
flags |= dnnl::normalization_flags::use_scale_shift;
dnnl::memory::dims dims;
dnnl::memory::format_tag format;
const int indHW = isNCHW ? 2 : 1;
const int bS = x->sizeAt(0);
const int iC = isNCHW ? x->sizeAt(1) : x->sizeAt(-1);
int iD, iH, iW;
if(xRank == 2) {
dims = {bS, iC};
format = dnnl::memory::format_tag::nc;
}
else if(xRank == 4) {
iH = x->sizeAt(indHW);
iW = x->sizeAt(indHW + 1);
dims = {bS, iC, iH, iW};
format = isNCHW ? dnnl::memory::format_tag::nchw : dnnl::memory::format_tag::nhwc;
}
else { // xRank = 5
iD = x->sizeAt(indHW);
iH = x->sizeAt(indHW + 1);
iW = x->sizeAt(indHW + 2);
dims = {bS, iC, iD, iH, iW};
format = isNCHW ? dnnl::memory::format_tag::ncdhw : dnnl::memory::format_tag::ndhwc;
}
// memory descriptors for arrays
// x
dnnl::memory::desc x_mkl_md = dnnl::memory::desc(dims, type, format);
dnnl::memory::desc x_user_md = dnnl::memory::desc(dims, type, format);
mkldnnUtils::setBlockStrides(x, x_user_md);
// z, output
dnnl::memory::desc z_mkl_md = dnnl::memory::desc(dims, type, dnnl::memory::format_tag::any);
dnnl::memory::desc z_user_md = dnnl::memory::desc(dims, type, format);
mkldnnUtils::setBlockStrides(z, z_user_md);
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
// batchnorm forward description
dnnl::batch_normalization_forward::desc op_ff_desc(dnnl::prop_kind::forward_inference, x_mkl_md, epsilon, flags);
dnnl::batch_normalization_forward::primitive_desc op_ff_prim_desc(op_ff_desc, engine);
// arguments (memory buffers) necessary for calculations
std::unordered_map<int, dnnl::memory> args;
dnnl::stream stream(engine);
// provide memory and check whether reorder is required
// x
mkldnnUtils::loadDataToMklStream(x, engine, stream, x_user_md, op_ff_prim_desc.src_desc(), args[DNNL_ARG_SRC]);
// z
auto z_user_mem = dnnl::memory(z_user_md, engine, z->buffer());
const bool zReorder = op_ff_prim_desc.dst_desc() != z_user_mem.get_desc();
auto z_mkl_mem = zReorder ? dnnl::memory(op_ff_prim_desc.dst_desc(), engine) : z_user_mem;
if (zReorder)
dnnl::reorder(z_user_mem, z_mkl_mem).execute(stream, z_user_mem, z_mkl_mem);
args[DNNL_ARG_DST] = z_mkl_mem;
// mean
auto mean_mkl_mem = dnnl::memory(op_ff_prim_desc.mean_desc(), engine, const_cast<void*>(mean->buffer()));
args[DNNL_ARG_MEAN] = mean_mkl_mem;
// variance
auto var_mkl_mem = dnnl::memory(op_ff_prim_desc.variance_desc(), engine, const_cast<void*>(variance->buffer()));
args[DNNL_ARG_VARIANCE] = var_mkl_mem;
// gamma and beta (and their gradients) if they are present
if(weights != nullptr) {
auto w_mkl_mem = dnnl::memory(op_ff_prim_desc.weights_desc(), engine, const_cast<void*>(weights->buffer()));
args[DNNL_ARG_WEIGHTS] = w_mkl_mem;
}
// run calculations
dnnl::batch_normalization_forward(op_ff_prim_desc).execute(stream, args);
// reorder outputs if necessary
if (zReorder)
dnnl::reorder(z_mkl_mem, z_user_mem).execute(stream, z_mkl_mem, z_user_mem);
stream.wait();
// shape::printArray(z_mkl_mem.map_data<float>(),8);
}
//////////////////////////////////////////////////////////////////////////
static void batchnormBackPropMKLDNN(const NDArray* x, const NDArray* mean, const NDArray* variance, const NDArray &dLdO, const NDArray* weights,
NDArray* dLdI, NDArray* dLdW, const float epsilon, const bool isNCHW) {
// unfortunately mkl dnn doesn't support any format (dnnl::memory::format_tag::any) for x
// x -> 2D:nc, 4D:nchw/nhwc, 5D:ncdhw/ndhwc
// mean -> 1D [c]
// variance -> 1D [c]
// dLdO - same shape as x
// weights 2D [2, c], weights({0,1, 0,0}) contains gamma and weights({1,2, 0,0}) contains beta
// dLdI - same shape as x
// dLdW - same shape as weights, dLdW({0,1, 0,0}) contains grad_gamma and dLdW({1,2, 0,0}) contains grad_beta
const int xRank = x->rankOf();
// input type
dnnl::memory::data_type type = dnnl::memory::data_type::f32;
// indicate whether gamma or/and beta are given
auto flags = dnnl::normalization_flags::use_global_stats; // don't calculate the mean and variance for each mini-batch
if (weights != nullptr)
flags |= dnnl::normalization_flags::use_scale_shift;
dnnl::memory::dims dims;
dnnl::memory::format_tag format;
const int indHW = isNCHW ? 2 : 1;
const int bS = x->sizeAt(0);
const int iC = isNCHW ? x->sizeAt(1) : x->sizeAt(-1);
int iD, iH, iW;
if(xRank == 2) {
dims = {bS, iC};
format = dnnl::memory::format_tag::nc;
}
else if(xRank == 4) {
iH = x->sizeAt(indHW);
iW = x->sizeAt(indHW + 1);
dims = {bS, iC, iH, iW};
format = isNCHW ? dnnl::memory::format_tag::nchw : dnnl::memory::format_tag::nhwc;
}
else { // xRank = 5
iD = x->sizeAt(indHW);
iH = x->sizeAt(indHW + 1);
iW = x->sizeAt(indHW + 2);
dims = {bS, iC, iD, iH, iW};
format = isNCHW ? dnnl::memory::format_tag::ncdhw : dnnl::memory::format_tag::ndhwc;
}
// memory descriptors for arrays
// x
dnnl::memory::desc x_mkl_md = dnnl::memory::desc(dims, type, format);
dnnl::memory::desc x_user_md = dnnl::memory::desc(dims, type, format);
mkldnnUtils::setBlockStrides(x, x_user_md);
// dLdO
dnnl::memory::desc dLdO_mkl_md = dnnl::memory::desc(dims, type, dnnl::memory::format_tag::any);
dnnl::memory::desc dLdO_user_md = dnnl::memory::desc(dims, type, format);
mkldnnUtils::setBlockStrides(&dLdO, dLdO_user_md);
// dLdI
dnnl::memory::desc dLdI_mkl_md = dnnl::memory::desc(dims, type, dnnl::memory::format_tag::any);
dnnl::memory::desc dLdI_user_md = dnnl::memory::desc(dims, type, format);
mkldnnUtils::setBlockStrides(dLdI, dLdI_user_md);
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
// batchnorm forward description
dnnl::batch_normalization_forward::desc op_ff_desc(dnnl::prop_kind::forward_inference, x_mkl_md, epsilon, flags);
dnnl::batch_normalization_forward::primitive_desc op_ff_prim_desc(op_ff_desc, engine);
// batchnorm backprop description
dnnl::batch_normalization_backward::desc op_bp_desc(dnnl::prop_kind::backward, dLdO_mkl_md, x_mkl_md, epsilon, flags);
dnnl::batch_normalization_backward::primitive_desc op_bp_prim_desc(op_bp_desc, engine, op_ff_prim_desc);
// arguments (memory buffers) necessary for calculations
std::unordered_map<int, dnnl::memory> args;
dnnl::stream stream(engine);
// provide memory and check whether reorder is required
// x
mkldnnUtils::loadDataToMklStream(x, engine, stream, x_user_md, op_bp_prim_desc.src_desc(), args[DNNL_ARG_SRC]);
// dLdO
mkldnnUtils::loadDataToMklStream(&dLdO, engine, stream, dLdO_user_md, op_bp_prim_desc.diff_dst_desc(), args[DNNL_ARG_DIFF_DST]);
// mean
auto mean_mkl_mem = dnnl::memory(op_bp_prim_desc.mean_desc(), engine, const_cast<void*>(mean->buffer()));
args[DNNL_ARG_MEAN] = mean_mkl_mem;
// variance
auto var_mkl_mem = dnnl::memory(op_bp_prim_desc.variance_desc(), engine, const_cast<void*>(variance->buffer()));
args[DNNL_ARG_VARIANCE] = var_mkl_mem;
// dLdI
auto dLdI_user_mem = dnnl::memory(dLdI_user_md, engine, dLdI->buffer());
const bool dLdIReorder = op_bp_prim_desc.diff_src_desc() != dLdI_user_mem.get_desc();
auto dLdI_mkl_mem = dLdIReorder ? dnnl::memory(op_bp_prim_desc.diff_src_desc(), engine) : dLdI_user_mem;
args[DNNL_ARG_DIFF_SRC] = dLdI_mkl_mem;
// gamma and beta (and their gradients) if they are present
if(weights != nullptr) {
auto w_mkl_mem = dnnl::memory(op_bp_prim_desc.weights_desc(), engine, const_cast<void*>(weights->buffer()));
args[DNNL_ARG_WEIGHTS] = w_mkl_mem;
auto dLdW_mkl_mem = dnnl::memory(op_bp_prim_desc.weights_desc(), engine, dLdW->buffer());
args[DNNL_ARG_DIFF_WEIGHTS] = dLdW_mkl_mem;
}
// run calculations
dnnl::batch_normalization_backward(op_bp_prim_desc).execute(stream, args);
// reorder outputs if necessary
if (dLdIReorder)
dnnl::reorder(dLdI_mkl_mem, dLdI_user_mem).execute(stream, dLdI_mkl_mem, dLdI_user_mem);
stream.wait();
// shape::printArray(dLdI_mkl_mem.map_data<float>(),8);
// notations:
// f = g * (gamma * ((x - m) / (v + eps)^0.5) + beta) -> means dLdO * ff_output
// g = dLdO
// stdInv = 1 / (v + eps)^0.5
// N - batch size (product of spatial dimensions)
// formula for full derivative with respect to input (x)
// dLdI = dfdx + dfdm*dmdx + dfdv*(dvdm*dmdx + dvdx)
// !!! MKL CALCULATES ONLY FIRST TERM dfdx, SO WE SHOULD CALCULATE TERM (dfdm*dmdx + dfdv*(dvdm*dmdx + dvdx)) BY OURSELF !!!
// dfdm = -gamma*stdInv*g_sum;
// dmdx = 1/N;
// dvdx = 2 * (x - m) / N
// dvdm = -2 * [(x - m)]_sum / N
// dfdv = -0.5 * [g*(x - m)]_sum * stdInv^3, drop gamma here for calc convenience
// finally:
// dLdI = dfdm / N + (2/N) * dfdv * (dvdm/2 + (x - m))
// dLdI = gamma * ( stdInv * -g_sum/N + (2/N) * dfdv * (dvdm/2 + (x - m)) )
std::vector<int> axes = isNCHW ? std::vector<int>{1} : std::vector<int>{xRank - 1};
const auto excludedAxes = ShapeUtils::evalDimsToExclude(x->rankOf(), axes);
// inversed batch size 1 / N
const auto Ninv = 1.f * mean->lengthOf() / x->lengthOf();
// x - mean
NDArray xMinusMean(x); // empty array with same shape as x
const_cast<NDArray*>(x)->applyBroadcast(sd::broadcast::Subtract, axes, *mean, xMinusMean);
// stdInv
NDArray stdInv = *variance + epsilon;
stdInv.applyTransform(transform::Reciprocal, stdInv); // 1 / (variance + epsilon)
stdInv.applyTransform(transform::Sqrt, stdInv); // 1 / (variance + epsilon)^0.5
// dfdm / N
auto dfdm = dLdO.reduceAlongDimension(sd::reduce::Sum, excludedAxes);
dfdm *= stdInv;
dfdm *= -Ninv;
// dvdm / 2
NDArray dvdm(mean); // empty array with same shape as mean
xMinusMean.reduceAlongDimension(sd::reduce::Sum, dvdm, excludedAxes);
dvdm *= -Ninv;
// (2/N)*dfdv
NDArray dfdv(variance); // empty array with same shape as variance
(xMinusMean * dLdO).reduceAlongDimension(sd::reduce::Sum, dfdv, excludedAxes);
dfdv *= stdInv*stdInv*stdInv;
dfdv *= -Ninv;
// dvdm/2 + (x - m)
xMinusMean.applyBroadcast(sd::broadcast::Add, axes, dvdm, xMinusMean);
// dfdv * (dvdm/2 + (x - m))
xMinusMean.applyBroadcast(sd::broadcast::Multiply, axes, dfdv, xMinusMean);
// add dfdm / N
xMinusMean.applyBroadcast(sd::broadcast::Add, axes, dfdm, xMinusMean);
// * gamma
auto gamma = (*weights)({0,1, 0,0});
xMinusMean.applyBroadcast(sd::broadcast::Multiply, axes, gamma, xMinusMean);
*dLdI += xMinusMean;
}
PLATFORM_IMPL(batchnorm, ENGINE_CPU) {
auto input = INPUT_VARIABLE(0); // 2D:nc, 4D:nchw/nhwc, 5D:ncdhw/ndhwc
auto mean = INPUT_VARIABLE(1); // [c]
auto variance = INPUT_VARIABLE(2); // [c]
NDArray* gamma = nullptr; // [c]
NDArray* beta = nullptr; // [c]
auto output = OUTPUT_VARIABLE(0); // same shape as input
const bool applyScale = (bool)INT_ARG(0);
const bool applyOffset = (bool)INT_ARG(1);
const double epsilon = T_ARG(0);
if(applyScale)
gamma = INPUT_VARIABLE(3);
if(applyOffset)
beta = INPUT_VARIABLE(3 + (int)applyScale);
const int numOfIntArgs = block.getIArguments()->size();
const int inRank = input->rankOf();
// get axes args to normalize input array over
std::vector<int> axes;
if(numOfIntArgs > 2)
for(int i = 2; i < numOfIntArgs; ++i)
axes.push_back(INT_ARG(i));
else
axes.push_back(inRank-1); // default dimension to reduce along is last dimension
const int numOfAxes = axes.size();
REQUIRE_TRUE(numOfAxes == 1, 0, "BATCHNORM_MKLDNN op: mkl dnn library supports only one axis which represents channel dimension, but got %i axes instead!", numOfAxes);
REQUIRE_TRUE(inRank == 2 || inRank == 4 || inRank == 5, 0, "BATCHNORM_MKLDNN op: possible values for rank of input array are 2, 4 or 5, but got %i instead!", inRank);
REQUIRE_TRUE(mean->rankOf() == 1 && mean->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_MKLDNN op: wrong shape of mean array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(mean).c_str());
REQUIRE_TRUE(variance->rankOf() == 1 && variance->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_MKLDNN op: wrong shape of variance array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(variance).c_str());
if(gamma != nullptr)
REQUIRE_TRUE(gamma->rankOf() == 1 && gamma->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_MKLDNN op: wrong shape of gamma array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(gamma).c_str());
if(beta != nullptr)
REQUIRE_TRUE(beta->rankOf() == 1 && beta->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_MKLDNN op: wrong shape of beta array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(beta).c_str());
// types of all input arrays should be the same (except dLdO)
for(int i = 1; i < block.width() - 1; ++i)
REQUIRE_TRUE(INPUT_VARIABLE(0)->dataType() == INPUT_VARIABLE(i)->dataType(), 0, "BATCHNORM_MKLDNN op: types of all input arrays should be the same !");
NDArray *weights = nullptr;
if(applyScale || applyOffset) {
weights = new NDArray(input->ordering(), {2, input->sizeAt(axes[0])}, input->dataType());
if(applyScale)
(*weights)({0,1, 0,0}).assign(gamma);
else
(*weights)({0,1, 0,0}).assign(1);
if(applyOffset)
(*weights)({1,2, 0,0}).assign(beta);
else
(*weights)({1,2, 0,0}).assign(0);
}
const bool isNCHW = !(axes[0] == inRank - 1 && inRank > 2);
batchnormMKLDNN(input, mean, variance, weights, output, epsilon, isNCHW);
delete weights;
return Status::OK();
}
//////////////////////////////////////////////////////////////////////////
PLATFORM_CHECK(batchnorm, ENGINE_CPU) {
auto input = INPUT_VARIABLE(0); // 2D:nc, 4D:nchw/nhwc, 5D:ncdhw/ndhwc
auto mean = INPUT_VARIABLE(1); // [c]
auto variance = INPUT_VARIABLE(2); // [c]
NDArray* gamma = nullptr; // [c]
NDArray* beta = nullptr; // [c]
auto output = OUTPUT_VARIABLE(0); // same shape as input
const bool applyScale = (bool)INT_ARG(0);
const bool applyOffset = (bool)INT_ARG(1);
if(applyScale)
gamma = INPUT_VARIABLE(3);
if(applyOffset)
beta = INPUT_VARIABLE(3 + (int)applyScale);
const int numOfIntArgs = block.getIArguments()->size();
std::vector<int> axes;
if(numOfIntArgs > 2)
for(int i = 2; i < numOfIntArgs; ++i)
axes.push_back(INT_ARG(i));
else
axes.push_back(input->rankOf()-1); // default dimension to reduce along is last dimension
DataType inputType = input->dataType();
DataType meanType = mean->dataType();
DataType varType = variance->dataType();
DataType gammaType = gamma != nullptr ? gamma->dataType() : DataType::FLOAT32;
DataType betaType = beta != nullptr ? beta->dataType() : DataType::FLOAT32;
DataType outType = output->dataType();
const int inRank = input->rankOf();
return block.isUseMKLDNN() && axes.size() == 1 && (axes[0] == 1 || axes[0] == inRank - 1) && (inRank == 2 || inRank == 4 || inRank == 5) &&
(inputType == DataType::FLOAT32 && meanType == DataType::FLOAT32 && varType == DataType::FLOAT32 &&
gammaType == DataType::FLOAT32 && betaType == DataType::FLOAT32 && outType == DataType::FLOAT32);
}
//////////////////////////////////////////////////////////////////////////
// PLATFORM_IMPL(batchnorm) {
// auto input = INPUT_VARIABLE(0);
// auto mean = INPUT_VARIABLE(1);
// auto variance = INPUT_VARIABLE(2);
// NDArray *gamma = nullptr;
// NDArray *beta = nullptr;
// auto output = OUTPUT_VARIABLE(0);
// const bool applyScale = (bool) INT_ARG(0);
// const bool applyOffset = (bool) INT_ARG(1);
// const double epsilon = T_ARG(0);
// if (applyScale)
// gamma = INPUT_VARIABLE(3);
// if (applyOffset)
// beta = INPUT_VARIABLE(3 + static_cast<int>(applyScale));
// std::vector<int> axes;
// if (block.numI() > 2)
// for (int i = 2; i < block.numI(); ++i)
// axes.push_back(INT_ARG(i));
// else
// axes.push_back(input->rankOf() - 1);
// std::vector<Nd4jLong> shape({2, mean->lengthOf()});
// NDArray weights = NDArrayFactory::create<float>('c', shape, block.launchContext());
// weights({0, 1, 0, 0}).assign(1.0f);
// weights({1, 2, 0, 0}).assign(0.0f);
// mkldnn_memory_desc_t empty;
// dnnl::memory::desc batchnorm_src_md(empty), batchnorm_dst_md(empty), user_src_md(empty), user_dst_md(empty);
// auto flag = dnnl::normalization_flags::use_global_stats;
// if (applyScale || applyOffset)
// flag |= dnnl::normalization_flags::use_scale_shift;
// mkldnnUtils::getMKLDNNMemoryDescBatchNorm(input, nullptr, output,
// &batchnorm_src_md, nullptr, &batchnorm_dst_md,
// &user_src_md, nullptr, &user_dst_md, axes[0]);
// auto batchnorm_desc = dnnl::batch_normalization_forward::desc(dnnl::prop_kind::forward_inference, batchnorm_src_md, epsilon, flag);
// auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
// dnnl::stream stream(engine);
// auto batchnorm_prim_desc = dnnl::batch_normalization_forward::primitive_desc(batchnorm_desc, engine);
// auto user_src_memory = dnnl::memory(user_src_md, engine, input->buffer());
// auto user_dst_memory = dnnl::memory(user_dst_md, engine, output->buffer());
// auto batchnorm_mean_memory = dnnl::memory(batchnorm_prim_desc.mean_desc(), engine,
// mean->buffer());
// auto batchnorm_variance_memory = dnnl::memory(batchnorm_prim_desc.variance_desc(), engine,
// variance->buffer());
// auto batchnorm_src_memory = user_src_memory;
// dnnl::memory m(batchnorm_src_md, engine);
// if (m.get_desc() != user_src_memory.get_desc()) {
// batchnorm_src_memory = dnnl::memory(batchnorm_src_md, engine);
// dnnl::reorder(user_src_memory, batchnorm_src_memory).execute(stream, user_src_memory,
// batchnorm_src_memory);
// }
// auto batchnorm_dst_memory = user_dst_memory;
// if (batchnorm_prim_desc.dst_desc() != user_dst_memory.get_desc()) {
// batchnorm_dst_memory = dnnl::memory(batchnorm_prim_desc.dst_desc(), engine);
// }
// if (applyScale || applyOffset) {
// if (gamma != nullptr) {
// weights({0, 1, 0, 0}).assign(gamma);
// }
// if (beta != nullptr) {
// weights({1, 2, 0, 0}).assign(beta);
// }
// auto batchnorm_weights_memory = dnnl::memory(batchnorm_prim_desc.weights_desc(), engine, weights.buffer());
// dnnl::batch_normalization_forward(batchnorm_prim_desc).execute(stream,
// {{MKLDNN_ARG_SRC, batchnorm_src_memory},
// {MKLDNN_ARG_MEAN, batchnorm_mean_memory},
// {MKLDNN_ARG_VARIANCE, batchnorm_variance_memory},
// {MKLDNN_ARG_WEIGHTS, batchnorm_weights_memory},
// {MKLDNN_ARG_DST, batchnorm_dst_memory}});
// } else {
// dnnl::batch_normalization_forward(batchnorm_prim_desc).execute(stream,
// {{MKLDNN_ARG_SRC, batchnorm_src_memory},
// {MKLDNN_ARG_MEAN, batchnorm_mean_memory},
// {MKLDNN_ARG_VARIANCE, batchnorm_variance_memory},
// {MKLDNN_ARG_DST, batchnorm_dst_memory}});
// }
// if (batchnorm_prim_desc.dst_desc() != user_dst_memory.get_desc()) {
// dnnl::reorder(batchnorm_dst_memory, user_dst_memory).execute(stream, batchnorm_dst_memory,
// user_dst_memory);
// }
// stream.wait();
// return Status::OK();
// }
//////////////////////////////////////////////////////////////////////////
// PLATFORM_CHECK(batchnorm) {
// // we don't want to use mkldnn if cpu doesn't support avx/avx2
// if (::optimalLevel() < 2)
// return false;
// auto input = INPUT_VARIABLE(0);
// auto mean = INPUT_VARIABLE(1);
// auto variance = INPUT_VARIABLE(2);
// NDArray *gamma = nullptr;
// NDArray *beta = nullptr;
// auto output = OUTPUT_VARIABLE(0);
// const bool applyScale = (bool) INT_ARG(0);
// const bool applyOffset = (bool) INT_ARG(1);
// const double epsilon = T_ARG(0);
// if (applyScale)
// gamma = INPUT_VARIABLE(3);
// if (applyOffset)
// beta = INPUT_VARIABLE(3 + static_cast<int>(applyScale));
// std::vector<int> axes;
// if (block.numI() > 2)
// for (int i = 2; i < block.numI(); ++i)
// axes.push_back(INT_ARG(i));
// else
// axes.push_back(input->rankOf() - 1);
// return block.isUseMKLDNN() &&
// sd::MKLDNNStream::isSupported({input, mean, variance, gamma, beta, output}) &&
// axes.size() == 1;
// }
//////////////////////////////////////////////////////////////////////////
PLATFORM_IMPL(batchnorm_bp, ENGINE_CPU) {
NDArray* input = INPUT_VARIABLE(0); // 2D:nc, 4D:nchw/nhwc, 5D:ncdhw/ndhwc
NDArray* mean = INPUT_VARIABLE(1); // [c]
NDArray* variance = INPUT_VARIABLE(2); // [c]
NDArray* gamma = nullptr; // [c]
NDArray* beta = nullptr; // [c]
NDArray* dLdO = INPUT_VARIABLE(block.width() - 1); // same as input
NDArray* dLdI = OUTPUT_VARIABLE(0); // same as input
NDArray* dLdM = OUTPUT_VARIABLE(1); // [c]
NDArray* dLdV = OUTPUT_VARIABLE(2); // [c]
NDArray* dLdG = nullptr; // [c]
NDArray* dLdB = nullptr; // [c]
const bool applyScale = (bool)INT_ARG(0);
const bool applyOffset = (bool)INT_ARG(1);
const float epsilon = T_ARG(0);
if(applyScale) {
gamma = INPUT_VARIABLE(3);
dLdG = OUTPUT_VARIABLE(3);
}
if(applyOffset) {
beta = INPUT_VARIABLE(3 + (int)applyScale);
dLdB = OUTPUT_VARIABLE(3 + (int)applyScale);
}
const int numOfIntArgs = block.getIArguments()->size();
const int inRank = input->rankOf();
// get axes args to normalize input array over
std::vector<int> axes;
if(numOfIntArgs > 2)
for(int i = 2; i < numOfIntArgs; ++i)
axes.push_back(INT_ARG(i));
else
axes.push_back(inRank-1); // default dimension to reduce along is last dimension
const int numOfAxes = axes.size();
REQUIRE_TRUE(numOfAxes == 1, 0, "BATCHNORM_BP_MKLDNN op: mkl dnn library supports only one axis which represents channel dimension, but got %i axes instead!", numOfAxes);
REQUIRE_TRUE(inRank == 2 || inRank == 4 || inRank == 5, 0, "BATCHNORM_BP_MKLDNN op: possible values for rank of input array are 2, 4 or 5, but got %i instead!", inRank);
REQUIRE_TRUE(input->isSameShape(dLdO), 0, "BATCHNORM_BP_MKLDNN op: wrong shape of gradients array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(input).c_str(), ShapeUtils::shapeAsString(dLdO).c_str());
REQUIRE_TRUE(mean->rankOf() == 1 && mean->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_BP_MKLDNN op: wrong shape of mean array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(mean).c_str());
REQUIRE_TRUE(variance->rankOf() == 1 && variance->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_BP_MKLDNN op: wrong shape of variance array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(variance).c_str());
if(gamma != nullptr)
REQUIRE_TRUE(gamma->rankOf() == 1 && gamma->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_BP_MKLDNN op: wrong shape of gamma array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(gamma).c_str());
if(beta != nullptr)
REQUIRE_TRUE(beta->rankOf() == 1 && beta->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_BP_MKLDNN op: wrong shape of beta array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(beta).c_str());
// types of all input arrays should be the same
for(int i = 1; i < block.width() - 1; ++i)
REQUIRE_TRUE(INPUT_VARIABLE(0)->dataType() == INPUT_VARIABLE(i)->dataType(), 0, "BATCHNORM_BP_MKLDNN op: types of all input arrays should be the same !");
NDArray *weights = nullptr, *dLdW = nullptr;
if(applyScale || applyOffset) {
weights = new NDArray(input->ordering(), {2, input->sizeAt(axes[0])}, input->dataType());
dLdW = new NDArray(input->ordering(), {2, input->sizeAt(axes[0])}, input->dataType());
if(applyScale)
(*weights)({0,1, 0,0}).assign(gamma);
else
(*weights)({0,1, 0,0}).assign(1);
if(applyOffset)
(*weights)({1,2, 0,0}).assign(beta);
else
(*weights)({1,2, 0,0}).assign(0);
}
const bool isNCHW = !(axes[0] == inRank - 1 && inRank > 2);
if (shape::strideDescendingCAscendingF(dLdO->shapeInfo()))
batchnormBackPropMKLDNN(input, mean, variance, *dLdO, weights, dLdI, dLdW, epsilon, isNCHW);
else
batchnormBackPropMKLDNN(input, mean, variance, dLdO->dup(), weights, dLdI, dLdW, epsilon, isNCHW);
*dLdM = 0;
*dLdV = 0;
if(applyScale || applyOffset) {
if(applyScale)
dLdG->assign((*dLdW)({0,1, 0,0}));
if(applyOffset)
dLdB->assign((*dLdW)({1,2, 0,0}));
delete weights;
delete dLdW;
}
return Status::OK();
}
//////////////////////////////////////////////////////////////////////////
PLATFORM_CHECK(batchnorm_bp, ENGINE_CPU) {
NDArray* input = INPUT_VARIABLE(0); // 2D:nc, 4D:nchw, 5D:ncdhw
NDArray* mean = INPUT_VARIABLE(1); // [c]
NDArray* variance = INPUT_VARIABLE(2); // [c]
NDArray* dLdO = INPUT_VARIABLE(3); // same as input
NDArray* gamma = nullptr; // [c]
NDArray* beta = nullptr; // [c]
NDArray* dLdI = OUTPUT_VARIABLE(0); // same as input
NDArray* dLdM = OUTPUT_VARIABLE(1); // [c]
NDArray* dLdV = OUTPUT_VARIABLE(2); // [c]
NDArray* dLdG = nullptr; // [c]
NDArray* dLdB = nullptr; // [c]
const bool applyScale = (bool)INT_ARG(0);
const bool applyOffset = (bool)INT_ARG(1);
if(applyScale) {
gamma = INPUT_VARIABLE(4);
dLdG = OUTPUT_VARIABLE(3);
}
if(applyOffset) {
beta = INPUT_VARIABLE(4 + (int)applyScale);
dLdB = OUTPUT_VARIABLE(3 + (int)applyScale);
}
const int numOfIntArgs = block.getIArguments()->size();
std::vector<int> axes;
if(numOfIntArgs > 2)
for(int i = 2; i < numOfIntArgs; ++i)
axes.push_back(INT_ARG(i));
else
axes.push_back(input->rankOf()-1); // default dimension to reduce along is last dimension
DataType inputType = input->dataType();
DataType meanType = mean->dataType();
DataType varType = variance->dataType();
DataType dLdOType = dLdO->dataType();
DataType gammaType = gamma != nullptr ? gamma->dataType() : DataType::FLOAT32;
DataType betaType = beta != nullptr ? beta->dataType() : DataType::FLOAT32;
DataType dLdIType = dLdI->dataType();
DataType dLdGType = gamma != nullptr ? dLdG->dataType() : DataType::FLOAT32;
DataType dLdBType = beta != nullptr ? dLdB->dataType() : DataType::FLOAT32;
const int inRank = input->rankOf();
return block.isUseMKLDNN() && axes.size() == 1 && (axes[0] == 1 || axes[0] == inRank - 1) && (inRank == 2 || inRank == 4 || inRank == 5) &&
(inputType == DataType::FLOAT32 && meanType == DataType::FLOAT32 && varType == DataType::FLOAT32 &&
dLdOType == DataType::FLOAT32 && gammaType == DataType::FLOAT32 && betaType == DataType::FLOAT32 &&
dLdIType == DataType::FLOAT32 && dLdGType == DataType::FLOAT32 && dLdBType == DataType::FLOAT32);
}
}
}
}