742 lines
31 KiB
C++
742 lines
31 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
* Copyright (c) 2019 Konduit K.K.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author saudet
|
|
// @author raver119@gmail.com
|
|
// @author Yurii Shyrma (iuriish@yahoo.com)
|
|
//
|
|
|
|
#include <ops/declarable/PlatformHelper.h>
|
|
#include <ops/declarable/OpRegistrator.h>
|
|
#include <system/platform_boilerplate.h>
|
|
|
|
#include <helpers/MKLDNNStream.h>
|
|
#include "mkldnnUtils.h"
|
|
#include <ops/declarable/helpers/convolutions.h>
|
|
#include <array/NDArrayFactory.h>
|
|
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
namespace platforms {
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
static void batchnormMKLDNN(const NDArray* x, const NDArray* mean, const NDArray* variance, const NDArray* weights, NDArray* z,
|
|
const float epsilon, const bool isNCHW) {
|
|
|
|
// unfortunately mkl dnn doesn't support any format (dnnl::memory::format_tag::any) for x
|
|
|
|
// x -> 2D:nc, 4D:nchw/nhwc, 5D:ncdhw/ndhwc
|
|
// mean -> 1D [c]
|
|
// variance -> 1D [c]
|
|
// weights 2D [2, c], weights({0,1, 0,0}) contains gamma and weights({1,2, 0,0}) contains beta
|
|
// z(output) - same shape as x
|
|
|
|
const int xRank = x->rankOf();
|
|
|
|
// input type
|
|
dnnl::memory::data_type type = dnnl::memory::data_type::f32;
|
|
|
|
// indicate whether gamma or/and beta are given
|
|
auto flags = dnnl::normalization_flags::use_global_stats; // don't calculate the mean and variance for each mini-batch
|
|
if (weights != nullptr)
|
|
flags |= dnnl::normalization_flags::use_scale_shift;
|
|
|
|
dnnl::memory::dims dims;
|
|
dnnl::memory::format_tag format;
|
|
|
|
const int indHW = isNCHW ? 2 : 1;
|
|
const int bS = x->sizeAt(0);
|
|
const int iC = isNCHW ? x->sizeAt(1) : x->sizeAt(-1);
|
|
|
|
int iD, iH, iW;
|
|
|
|
if(xRank == 2) {
|
|
dims = {bS, iC};
|
|
format = dnnl::memory::format_tag::nc;
|
|
}
|
|
else if(xRank == 4) {
|
|
iH = x->sizeAt(indHW);
|
|
iW = x->sizeAt(indHW + 1);
|
|
dims = {bS, iC, iH, iW};
|
|
format = isNCHW ? dnnl::memory::format_tag::nchw : dnnl::memory::format_tag::nhwc;
|
|
}
|
|
else { // xRank = 5
|
|
iD = x->sizeAt(indHW);
|
|
iH = x->sizeAt(indHW + 1);
|
|
iW = x->sizeAt(indHW + 2);
|
|
dims = {bS, iC, iD, iH, iW};
|
|
format = isNCHW ? dnnl::memory::format_tag::ncdhw : dnnl::memory::format_tag::ndhwc;
|
|
}
|
|
|
|
// memory descriptors for arrays
|
|
|
|
// x
|
|
dnnl::memory::desc x_mkl_md = dnnl::memory::desc(dims, type, format);
|
|
dnnl::memory::desc x_user_md = dnnl::memory::desc(dims, type, format);
|
|
|
|
mkldnnUtils::setBlockStrides(x, x_user_md);
|
|
// z, output
|
|
dnnl::memory::desc z_mkl_md = dnnl::memory::desc(dims, type, dnnl::memory::format_tag::any);
|
|
dnnl::memory::desc z_user_md = dnnl::memory::desc(dims, type, format);
|
|
|
|
mkldnnUtils::setBlockStrides(z, z_user_md);
|
|
|
|
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
|
|
|
|
// batchnorm forward description
|
|
dnnl::batch_normalization_forward::desc op_ff_desc(dnnl::prop_kind::forward_inference, x_mkl_md, epsilon, flags);
|
|
dnnl::batch_normalization_forward::primitive_desc op_ff_prim_desc(op_ff_desc, engine);
|
|
|
|
// arguments (memory buffers) necessary for calculations
|
|
std::unordered_map<int, dnnl::memory> args;
|
|
|
|
dnnl::stream stream(engine);
|
|
|
|
// provide memory and check whether reorder is required
|
|
|
|
// x
|
|
mkldnnUtils::loadDataToMklStream(x, engine, stream, x_user_md, op_ff_prim_desc.src_desc(), args[DNNL_ARG_SRC]);
|
|
|
|
// z
|
|
auto z_user_mem = dnnl::memory(z_user_md, engine, z->buffer());
|
|
const bool zReorder = op_ff_prim_desc.dst_desc() != z_user_mem.get_desc();
|
|
auto z_mkl_mem = zReorder ? dnnl::memory(op_ff_prim_desc.dst_desc(), engine) : z_user_mem;
|
|
if (zReorder)
|
|
dnnl::reorder(z_user_mem, z_mkl_mem).execute(stream, z_user_mem, z_mkl_mem);
|
|
args[DNNL_ARG_DST] = z_mkl_mem;
|
|
|
|
// mean
|
|
auto mean_mkl_mem = dnnl::memory(op_ff_prim_desc.mean_desc(), engine, const_cast<void*>(mean->buffer()));
|
|
args[DNNL_ARG_MEAN] = mean_mkl_mem;
|
|
|
|
// variance
|
|
auto var_mkl_mem = dnnl::memory(op_ff_prim_desc.variance_desc(), engine, const_cast<void*>(variance->buffer()));
|
|
args[DNNL_ARG_VARIANCE] = var_mkl_mem;
|
|
|
|
// gamma and beta (and their gradients) if they are present
|
|
if(weights != nullptr) {
|
|
|
|
auto w_mkl_mem = dnnl::memory(op_ff_prim_desc.weights_desc(), engine, const_cast<void*>(weights->buffer()));
|
|
args[DNNL_ARG_WEIGHTS] = w_mkl_mem;
|
|
}
|
|
|
|
// run calculations
|
|
dnnl::batch_normalization_forward(op_ff_prim_desc).execute(stream, args);
|
|
|
|
// reorder outputs if necessary
|
|
if (zReorder)
|
|
dnnl::reorder(z_mkl_mem, z_user_mem).execute(stream, z_mkl_mem, z_user_mem);
|
|
|
|
stream.wait();
|
|
|
|
// shape::printArray(z_mkl_mem.map_data<float>(),8);
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
static void batchnormBackPropMKLDNN(const NDArray* x, const NDArray* mean, const NDArray* variance, const NDArray &dLdO, const NDArray* weights,
|
|
NDArray* dLdI, NDArray* dLdW, const float epsilon, const bool isNCHW) {
|
|
|
|
// unfortunately mkl dnn doesn't support any format (dnnl::memory::format_tag::any) for x
|
|
|
|
// x -> 2D:nc, 4D:nchw/nhwc, 5D:ncdhw/ndhwc
|
|
// mean -> 1D [c]
|
|
// variance -> 1D [c]
|
|
// dLdO - same shape as x
|
|
// weights 2D [2, c], weights({0,1, 0,0}) contains gamma and weights({1,2, 0,0}) contains beta
|
|
// dLdI - same shape as x
|
|
// dLdW - same shape as weights, dLdW({0,1, 0,0}) contains grad_gamma and dLdW({1,2, 0,0}) contains grad_beta
|
|
|
|
const int xRank = x->rankOf();
|
|
|
|
// input type
|
|
dnnl::memory::data_type type = dnnl::memory::data_type::f32;
|
|
|
|
// indicate whether gamma or/and beta are given
|
|
auto flags = dnnl::normalization_flags::use_global_stats; // don't calculate the mean and variance for each mini-batch
|
|
if (weights != nullptr)
|
|
flags |= dnnl::normalization_flags::use_scale_shift;
|
|
|
|
dnnl::memory::dims dims;
|
|
dnnl::memory::format_tag format;
|
|
|
|
const int indHW = isNCHW ? 2 : 1;
|
|
const int bS = x->sizeAt(0);
|
|
const int iC = isNCHW ? x->sizeAt(1) : x->sizeAt(-1);
|
|
|
|
int iD, iH, iW;
|
|
|
|
if(xRank == 2) {
|
|
dims = {bS, iC};
|
|
format = dnnl::memory::format_tag::nc;
|
|
}
|
|
else if(xRank == 4) {
|
|
iH = x->sizeAt(indHW);
|
|
iW = x->sizeAt(indHW + 1);
|
|
dims = {bS, iC, iH, iW};
|
|
format = isNCHW ? dnnl::memory::format_tag::nchw : dnnl::memory::format_tag::nhwc;
|
|
}
|
|
else { // xRank = 5
|
|
iD = x->sizeAt(indHW);
|
|
iH = x->sizeAt(indHW + 1);
|
|
iW = x->sizeAt(indHW + 2);
|
|
dims = {bS, iC, iD, iH, iW};
|
|
format = isNCHW ? dnnl::memory::format_tag::ncdhw : dnnl::memory::format_tag::ndhwc;
|
|
}
|
|
|
|
// memory descriptors for arrays
|
|
|
|
// x
|
|
dnnl::memory::desc x_mkl_md = dnnl::memory::desc(dims, type, format);
|
|
dnnl::memory::desc x_user_md = dnnl::memory::desc(dims, type, format);
|
|
|
|
mkldnnUtils::setBlockStrides(x, x_user_md);
|
|
|
|
// dLdO
|
|
dnnl::memory::desc dLdO_mkl_md = dnnl::memory::desc(dims, type, dnnl::memory::format_tag::any);
|
|
dnnl::memory::desc dLdO_user_md = dnnl::memory::desc(dims, type, format);
|
|
|
|
mkldnnUtils::setBlockStrides(&dLdO, dLdO_user_md);
|
|
|
|
// dLdI
|
|
dnnl::memory::desc dLdI_mkl_md = dnnl::memory::desc(dims, type, dnnl::memory::format_tag::any);
|
|
dnnl::memory::desc dLdI_user_md = dnnl::memory::desc(dims, type, format);
|
|
|
|
mkldnnUtils::setBlockStrides(dLdI, dLdI_user_md);
|
|
|
|
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
|
|
|
|
// batchnorm forward description
|
|
dnnl::batch_normalization_forward::desc op_ff_desc(dnnl::prop_kind::forward_inference, x_mkl_md, epsilon, flags);
|
|
dnnl::batch_normalization_forward::primitive_desc op_ff_prim_desc(op_ff_desc, engine);
|
|
|
|
// batchnorm backprop description
|
|
dnnl::batch_normalization_backward::desc op_bp_desc(dnnl::prop_kind::backward, dLdO_mkl_md, x_mkl_md, epsilon, flags);
|
|
dnnl::batch_normalization_backward::primitive_desc op_bp_prim_desc(op_bp_desc, engine, op_ff_prim_desc);
|
|
|
|
// arguments (memory buffers) necessary for calculations
|
|
std::unordered_map<int, dnnl::memory> args;
|
|
|
|
dnnl::stream stream(engine);
|
|
|
|
// provide memory and check whether reorder is required
|
|
|
|
// x
|
|
mkldnnUtils::loadDataToMklStream(x, engine, stream, x_user_md, op_bp_prim_desc.src_desc(), args[DNNL_ARG_SRC]);
|
|
|
|
// dLdO
|
|
mkldnnUtils::loadDataToMklStream(&dLdO, engine, stream, dLdO_user_md, op_bp_prim_desc.diff_dst_desc(), args[DNNL_ARG_DIFF_DST]);
|
|
|
|
// mean
|
|
auto mean_mkl_mem = dnnl::memory(op_bp_prim_desc.mean_desc(), engine, const_cast<void*>(mean->buffer()));
|
|
args[DNNL_ARG_MEAN] = mean_mkl_mem;
|
|
|
|
// variance
|
|
auto var_mkl_mem = dnnl::memory(op_bp_prim_desc.variance_desc(), engine, const_cast<void*>(variance->buffer()));
|
|
args[DNNL_ARG_VARIANCE] = var_mkl_mem;
|
|
|
|
// dLdI
|
|
auto dLdI_user_mem = dnnl::memory(dLdI_user_md, engine, dLdI->buffer());
|
|
const bool dLdIReorder = op_bp_prim_desc.diff_src_desc() != dLdI_user_mem.get_desc();
|
|
auto dLdI_mkl_mem = dLdIReorder ? dnnl::memory(op_bp_prim_desc.diff_src_desc(), engine) : dLdI_user_mem;
|
|
args[DNNL_ARG_DIFF_SRC] = dLdI_mkl_mem;
|
|
|
|
// gamma and beta (and their gradients) if they are present
|
|
if(weights != nullptr) {
|
|
|
|
auto w_mkl_mem = dnnl::memory(op_bp_prim_desc.weights_desc(), engine, const_cast<void*>(weights->buffer()));
|
|
args[DNNL_ARG_WEIGHTS] = w_mkl_mem;
|
|
|
|
auto dLdW_mkl_mem = dnnl::memory(op_bp_prim_desc.weights_desc(), engine, dLdW->buffer());
|
|
args[DNNL_ARG_DIFF_WEIGHTS] = dLdW_mkl_mem;
|
|
}
|
|
|
|
// run calculations
|
|
dnnl::batch_normalization_backward(op_bp_prim_desc).execute(stream, args);
|
|
|
|
// reorder outputs if necessary
|
|
if (dLdIReorder)
|
|
dnnl::reorder(dLdI_mkl_mem, dLdI_user_mem).execute(stream, dLdI_mkl_mem, dLdI_user_mem);
|
|
|
|
stream.wait();
|
|
|
|
// shape::printArray(dLdI_mkl_mem.map_data<float>(),8);
|
|
|
|
// notations:
|
|
// f = g * (gamma * ((x - m) / (v + eps)^0.5) + beta) -> means dLdO * ff_output
|
|
// g = dLdO
|
|
// stdInv = 1 / (v + eps)^0.5
|
|
// N - batch size (product of spatial dimensions)
|
|
|
|
// formula for full derivative with respect to input (x)
|
|
// dLdI = dfdx + dfdm*dmdx + dfdv*(dvdm*dmdx + dvdx)
|
|
|
|
// !!! MKL CALCULATES ONLY FIRST TERM dfdx, SO WE SHOULD CALCULATE TERM (dfdm*dmdx + dfdv*(dvdm*dmdx + dvdx)) BY OURSELF !!!
|
|
|
|
// dfdm = -gamma*stdInv*g_sum;
|
|
// dmdx = 1/N;
|
|
// dvdx = 2 * (x - m) / N
|
|
// dvdm = -2 * [(x - m)]_sum / N
|
|
// dfdv = -0.5 * [g*(x - m)]_sum * stdInv^3, drop gamma here for calc convenience
|
|
|
|
// finally:
|
|
// dLdI = dfdm / N + (2/N) * dfdv * (dvdm/2 + (x - m))
|
|
// dLdI = gamma * ( stdInv * -g_sum/N + (2/N) * dfdv * (dvdm/2 + (x - m)) )
|
|
|
|
std::vector<int> axes = isNCHW ? std::vector<int>{1} : std::vector<int>{xRank - 1};
|
|
const auto excludedAxes = ShapeUtils::evalDimsToExclude(x->rankOf(), axes);
|
|
|
|
// inversed batch size 1 / N
|
|
const auto Ninv = 1.f * mean->lengthOf() / x->lengthOf();
|
|
|
|
// x - mean
|
|
NDArray xMinusMean(x); // empty array with same shape as x
|
|
const_cast<NDArray*>(x)->applyBroadcast(sd::broadcast::Subtract, axes, *mean, xMinusMean);
|
|
|
|
// stdInv
|
|
NDArray stdInv = *variance + epsilon;
|
|
stdInv.applyTransform(transform::Reciprocal, stdInv); // 1 / (variance + epsilon)
|
|
stdInv.applyTransform(transform::Sqrt, stdInv); // 1 / (variance + epsilon)^0.5
|
|
|
|
// dfdm / N
|
|
auto dfdm = dLdO.reduceAlongDimension(sd::reduce::Sum, excludedAxes);
|
|
dfdm *= stdInv;
|
|
dfdm *= -Ninv;
|
|
|
|
// dvdm / 2
|
|
NDArray dvdm(mean); // empty array with same shape as mean
|
|
xMinusMean.reduceAlongDimension(sd::reduce::Sum, dvdm, excludedAxes);
|
|
dvdm *= -Ninv;
|
|
|
|
// (2/N)*dfdv
|
|
NDArray dfdv(variance); // empty array with same shape as variance
|
|
(xMinusMean * dLdO).reduceAlongDimension(sd::reduce::Sum, dfdv, excludedAxes);
|
|
dfdv *= stdInv*stdInv*stdInv;
|
|
dfdv *= -Ninv;
|
|
|
|
// dvdm/2 + (x - m)
|
|
xMinusMean.applyBroadcast(sd::broadcast::Add, axes, dvdm, xMinusMean);
|
|
// dfdv * (dvdm/2 + (x - m))
|
|
xMinusMean.applyBroadcast(sd::broadcast::Multiply, axes, dfdv, xMinusMean);
|
|
// add dfdm / N
|
|
xMinusMean.applyBroadcast(sd::broadcast::Add, axes, dfdm, xMinusMean);
|
|
// * gamma
|
|
auto gamma = (*weights)({0,1, 0,0});
|
|
xMinusMean.applyBroadcast(sd::broadcast::Multiply, axes, gamma, xMinusMean);
|
|
|
|
*dLdI += xMinusMean;
|
|
}
|
|
|
|
PLATFORM_IMPL(batchnorm, ENGINE_CPU) {
|
|
|
|
auto input = INPUT_VARIABLE(0); // 2D:nc, 4D:nchw/nhwc, 5D:ncdhw/ndhwc
|
|
auto mean = INPUT_VARIABLE(1); // [c]
|
|
auto variance = INPUT_VARIABLE(2); // [c]
|
|
NDArray* gamma = nullptr; // [c]
|
|
NDArray* beta = nullptr; // [c]
|
|
|
|
auto output = OUTPUT_VARIABLE(0); // same shape as input
|
|
|
|
const bool applyScale = (bool)INT_ARG(0);
|
|
const bool applyOffset = (bool)INT_ARG(1);
|
|
const double epsilon = T_ARG(0);
|
|
|
|
if(applyScale)
|
|
gamma = INPUT_VARIABLE(3);
|
|
if(applyOffset)
|
|
beta = INPUT_VARIABLE(3 + (int)applyScale);
|
|
|
|
const int numOfIntArgs = block.getIArguments()->size();
|
|
const int inRank = input->rankOf();
|
|
|
|
// get axes args to normalize input array over
|
|
std::vector<int> axes;
|
|
if(numOfIntArgs > 2)
|
|
for(int i = 2; i < numOfIntArgs; ++i)
|
|
axes.push_back(INT_ARG(i));
|
|
else
|
|
axes.push_back(inRank-1); // default dimension to reduce along is last dimension
|
|
|
|
const int numOfAxes = axes.size();
|
|
REQUIRE_TRUE(numOfAxes == 1, 0, "BATCHNORM_MKLDNN op: mkl dnn library supports only one axis which represents channel dimension, but got %i axes instead!", numOfAxes);
|
|
REQUIRE_TRUE(inRank == 2 || inRank == 4 || inRank == 5, 0, "BATCHNORM_MKLDNN op: possible values for rank of input array are 2, 4 or 5, but got %i instead!", inRank);
|
|
REQUIRE_TRUE(mean->rankOf() == 1 && mean->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_MKLDNN op: wrong shape of mean array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(mean).c_str());
|
|
REQUIRE_TRUE(variance->rankOf() == 1 && variance->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_MKLDNN op: wrong shape of variance array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(variance).c_str());
|
|
if(gamma != nullptr)
|
|
REQUIRE_TRUE(gamma->rankOf() == 1 && gamma->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_MKLDNN op: wrong shape of gamma array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(gamma).c_str());
|
|
if(beta != nullptr)
|
|
REQUIRE_TRUE(beta->rankOf() == 1 && beta->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_MKLDNN op: wrong shape of beta array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(beta).c_str());
|
|
|
|
// types of all input arrays should be the same (except dLdO)
|
|
for(int i = 1; i < block.width() - 1; ++i)
|
|
REQUIRE_TRUE(INPUT_VARIABLE(0)->dataType() == INPUT_VARIABLE(i)->dataType(), 0, "BATCHNORM_MKLDNN op: types of all input arrays should be the same !");
|
|
|
|
|
|
NDArray *weights = nullptr;
|
|
|
|
if(applyScale || applyOffset) {
|
|
|
|
weights = new NDArray(input->ordering(), {2, input->sizeAt(axes[0])}, input->dataType());
|
|
|
|
if(applyScale)
|
|
(*weights)({0,1, 0,0}).assign(gamma);
|
|
else
|
|
(*weights)({0,1, 0,0}).assign(1);
|
|
if(applyOffset)
|
|
(*weights)({1,2, 0,0}).assign(beta);
|
|
else
|
|
(*weights)({1,2, 0,0}).assign(0);
|
|
}
|
|
|
|
const bool isNCHW = !(axes[0] == inRank - 1 && inRank > 2);
|
|
|
|
batchnormMKLDNN(input, mean, variance, weights, output, epsilon, isNCHW);
|
|
|
|
delete weights;
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
PLATFORM_CHECK(batchnorm, ENGINE_CPU) {
|
|
|
|
auto input = INPUT_VARIABLE(0); // 2D:nc, 4D:nchw/nhwc, 5D:ncdhw/ndhwc
|
|
auto mean = INPUT_VARIABLE(1); // [c]
|
|
auto variance = INPUT_VARIABLE(2); // [c]
|
|
NDArray* gamma = nullptr; // [c]
|
|
NDArray* beta = nullptr; // [c]
|
|
|
|
auto output = OUTPUT_VARIABLE(0); // same shape as input
|
|
|
|
const bool applyScale = (bool)INT_ARG(0);
|
|
const bool applyOffset = (bool)INT_ARG(1);
|
|
|
|
if(applyScale)
|
|
gamma = INPUT_VARIABLE(3);
|
|
if(applyOffset)
|
|
beta = INPUT_VARIABLE(3 + (int)applyScale);
|
|
|
|
|
|
const int numOfIntArgs = block.getIArguments()->size();
|
|
std::vector<int> axes;
|
|
if(numOfIntArgs > 2)
|
|
for(int i = 2; i < numOfIntArgs; ++i)
|
|
axes.push_back(INT_ARG(i));
|
|
else
|
|
axes.push_back(input->rankOf()-1); // default dimension to reduce along is last dimension
|
|
|
|
DataType inputType = input->dataType();
|
|
DataType meanType = mean->dataType();
|
|
DataType varType = variance->dataType();
|
|
DataType gammaType = gamma != nullptr ? gamma->dataType() : DataType::FLOAT32;
|
|
DataType betaType = beta != nullptr ? beta->dataType() : DataType::FLOAT32;
|
|
DataType outType = output->dataType();
|
|
|
|
const int inRank = input->rankOf();
|
|
|
|
return block.isUseMKLDNN() && axes.size() == 1 && (axes[0] == 1 || axes[0] == inRank - 1) && (inRank == 2 || inRank == 4 || inRank == 5) &&
|
|
(inputType == DataType::FLOAT32 && meanType == DataType::FLOAT32 && varType == DataType::FLOAT32 &&
|
|
gammaType == DataType::FLOAT32 && betaType == DataType::FLOAT32 && outType == DataType::FLOAT32);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// PLATFORM_IMPL(batchnorm) {
|
|
|
|
// auto input = INPUT_VARIABLE(0);
|
|
// auto mean = INPUT_VARIABLE(1);
|
|
// auto variance = INPUT_VARIABLE(2);
|
|
// NDArray *gamma = nullptr;
|
|
// NDArray *beta = nullptr;
|
|
|
|
// auto output = OUTPUT_VARIABLE(0);
|
|
|
|
// const bool applyScale = (bool) INT_ARG(0);
|
|
// const bool applyOffset = (bool) INT_ARG(1);
|
|
// const double epsilon = T_ARG(0);
|
|
|
|
// if (applyScale)
|
|
// gamma = INPUT_VARIABLE(3);
|
|
// if (applyOffset)
|
|
// beta = INPUT_VARIABLE(3 + static_cast<int>(applyScale));
|
|
|
|
// std::vector<int> axes;
|
|
// if (block.numI() > 2)
|
|
// for (int i = 2; i < block.numI(); ++i)
|
|
// axes.push_back(INT_ARG(i));
|
|
// else
|
|
// axes.push_back(input->rankOf() - 1);
|
|
|
|
// std::vector<Nd4jLong> shape({2, mean->lengthOf()});
|
|
// NDArray weights = NDArrayFactory::create<float>('c', shape, block.launchContext());
|
|
// weights({0, 1, 0, 0}).assign(1.0f);
|
|
// weights({1, 2, 0, 0}).assign(0.0f);
|
|
|
|
// mkldnn_memory_desc_t empty;
|
|
// dnnl::memory::desc batchnorm_src_md(empty), batchnorm_dst_md(empty), user_src_md(empty), user_dst_md(empty);
|
|
|
|
// auto flag = dnnl::normalization_flags::use_global_stats;
|
|
// if (applyScale || applyOffset)
|
|
// flag |= dnnl::normalization_flags::use_scale_shift;
|
|
|
|
// mkldnnUtils::getMKLDNNMemoryDescBatchNorm(input, nullptr, output,
|
|
// &batchnorm_src_md, nullptr, &batchnorm_dst_md,
|
|
// &user_src_md, nullptr, &user_dst_md, axes[0]);
|
|
|
|
// auto batchnorm_desc = dnnl::batch_normalization_forward::desc(dnnl::prop_kind::forward_inference, batchnorm_src_md, epsilon, flag);
|
|
|
|
// auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
|
|
// dnnl::stream stream(engine);
|
|
// auto batchnorm_prim_desc = dnnl::batch_normalization_forward::primitive_desc(batchnorm_desc, engine);
|
|
// auto user_src_memory = dnnl::memory(user_src_md, engine, input->buffer());
|
|
// auto user_dst_memory = dnnl::memory(user_dst_md, engine, output->buffer());
|
|
// auto batchnorm_mean_memory = dnnl::memory(batchnorm_prim_desc.mean_desc(), engine,
|
|
// mean->buffer());
|
|
// auto batchnorm_variance_memory = dnnl::memory(batchnorm_prim_desc.variance_desc(), engine,
|
|
// variance->buffer());
|
|
// auto batchnorm_src_memory = user_src_memory;
|
|
// dnnl::memory m(batchnorm_src_md, engine);
|
|
// if (m.get_desc() != user_src_memory.get_desc()) {
|
|
// batchnorm_src_memory = dnnl::memory(batchnorm_src_md, engine);
|
|
// dnnl::reorder(user_src_memory, batchnorm_src_memory).execute(stream, user_src_memory,
|
|
// batchnorm_src_memory);
|
|
// }
|
|
// auto batchnorm_dst_memory = user_dst_memory;
|
|
// if (batchnorm_prim_desc.dst_desc() != user_dst_memory.get_desc()) {
|
|
// batchnorm_dst_memory = dnnl::memory(batchnorm_prim_desc.dst_desc(), engine);
|
|
// }
|
|
// if (applyScale || applyOffset) {
|
|
// if (gamma != nullptr) {
|
|
// weights({0, 1, 0, 0}).assign(gamma);
|
|
// }
|
|
// if (beta != nullptr) {
|
|
// weights({1, 2, 0, 0}).assign(beta);
|
|
// }
|
|
|
|
// auto batchnorm_weights_memory = dnnl::memory(batchnorm_prim_desc.weights_desc(), engine, weights.buffer());
|
|
// dnnl::batch_normalization_forward(batchnorm_prim_desc).execute(stream,
|
|
// {{MKLDNN_ARG_SRC, batchnorm_src_memory},
|
|
// {MKLDNN_ARG_MEAN, batchnorm_mean_memory},
|
|
// {MKLDNN_ARG_VARIANCE, batchnorm_variance_memory},
|
|
// {MKLDNN_ARG_WEIGHTS, batchnorm_weights_memory},
|
|
// {MKLDNN_ARG_DST, batchnorm_dst_memory}});
|
|
// } else {
|
|
// dnnl::batch_normalization_forward(batchnorm_prim_desc).execute(stream,
|
|
// {{MKLDNN_ARG_SRC, batchnorm_src_memory},
|
|
// {MKLDNN_ARG_MEAN, batchnorm_mean_memory},
|
|
// {MKLDNN_ARG_VARIANCE, batchnorm_variance_memory},
|
|
// {MKLDNN_ARG_DST, batchnorm_dst_memory}});
|
|
// }
|
|
// if (batchnorm_prim_desc.dst_desc() != user_dst_memory.get_desc()) {
|
|
// dnnl::reorder(batchnorm_dst_memory, user_dst_memory).execute(stream, batchnorm_dst_memory,
|
|
// user_dst_memory);
|
|
// }
|
|
// stream.wait();
|
|
|
|
// return Status::OK();
|
|
// }
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// PLATFORM_CHECK(batchnorm) {
|
|
// // we don't want to use mkldnn if cpu doesn't support avx/avx2
|
|
// if (::optimalLevel() < 2)
|
|
// return false;
|
|
|
|
// auto input = INPUT_VARIABLE(0);
|
|
// auto mean = INPUT_VARIABLE(1);
|
|
// auto variance = INPUT_VARIABLE(2);
|
|
// NDArray *gamma = nullptr;
|
|
// NDArray *beta = nullptr;
|
|
|
|
// auto output = OUTPUT_VARIABLE(0);
|
|
|
|
// const bool applyScale = (bool) INT_ARG(0);
|
|
// const bool applyOffset = (bool) INT_ARG(1);
|
|
// const double epsilon = T_ARG(0);
|
|
|
|
// if (applyScale)
|
|
// gamma = INPUT_VARIABLE(3);
|
|
// if (applyOffset)
|
|
// beta = INPUT_VARIABLE(3 + static_cast<int>(applyScale));
|
|
|
|
// std::vector<int> axes;
|
|
// if (block.numI() > 2)
|
|
// for (int i = 2; i < block.numI(); ++i)
|
|
// axes.push_back(INT_ARG(i));
|
|
// else
|
|
// axes.push_back(input->rankOf() - 1);
|
|
|
|
// return block.isUseMKLDNN() &&
|
|
// sd::MKLDNNStream::isSupported({input, mean, variance, gamma, beta, output}) &&
|
|
// axes.size() == 1;
|
|
// }
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
PLATFORM_IMPL(batchnorm_bp, ENGINE_CPU) {
|
|
|
|
NDArray* input = INPUT_VARIABLE(0); // 2D:nc, 4D:nchw/nhwc, 5D:ncdhw/ndhwc
|
|
NDArray* mean = INPUT_VARIABLE(1); // [c]
|
|
NDArray* variance = INPUT_VARIABLE(2); // [c]
|
|
NDArray* gamma = nullptr; // [c]
|
|
NDArray* beta = nullptr; // [c]
|
|
NDArray* dLdO = INPUT_VARIABLE(block.width() - 1); // same as input
|
|
|
|
NDArray* dLdI = OUTPUT_VARIABLE(0); // same as input
|
|
NDArray* dLdM = OUTPUT_VARIABLE(1); // [c]
|
|
NDArray* dLdV = OUTPUT_VARIABLE(2); // [c]
|
|
NDArray* dLdG = nullptr; // [c]
|
|
NDArray* dLdB = nullptr; // [c]
|
|
|
|
const bool applyScale = (bool)INT_ARG(0);
|
|
const bool applyOffset = (bool)INT_ARG(1);
|
|
const float epsilon = T_ARG(0);
|
|
|
|
if(applyScale) {
|
|
gamma = INPUT_VARIABLE(3);
|
|
dLdG = OUTPUT_VARIABLE(3);
|
|
}
|
|
if(applyOffset) {
|
|
beta = INPUT_VARIABLE(3 + (int)applyScale);
|
|
dLdB = OUTPUT_VARIABLE(3 + (int)applyScale);
|
|
}
|
|
|
|
const int numOfIntArgs = block.getIArguments()->size();
|
|
const int inRank = input->rankOf();
|
|
|
|
// get axes args to normalize input array over
|
|
std::vector<int> axes;
|
|
if(numOfIntArgs > 2)
|
|
for(int i = 2; i < numOfIntArgs; ++i)
|
|
axes.push_back(INT_ARG(i));
|
|
else
|
|
axes.push_back(inRank-1); // default dimension to reduce along is last dimension
|
|
|
|
const int numOfAxes = axes.size();
|
|
REQUIRE_TRUE(numOfAxes == 1, 0, "BATCHNORM_BP_MKLDNN op: mkl dnn library supports only one axis which represents channel dimension, but got %i axes instead!", numOfAxes);
|
|
REQUIRE_TRUE(inRank == 2 || inRank == 4 || inRank == 5, 0, "BATCHNORM_BP_MKLDNN op: possible values for rank of input array are 2, 4 or 5, but got %i instead!", inRank);
|
|
REQUIRE_TRUE(input->isSameShape(dLdO), 0, "BATCHNORM_BP_MKLDNN op: wrong shape of gradients array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(input).c_str(), ShapeUtils::shapeAsString(dLdO).c_str());
|
|
REQUIRE_TRUE(mean->rankOf() == 1 && mean->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_BP_MKLDNN op: wrong shape of mean array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(mean).c_str());
|
|
REQUIRE_TRUE(variance->rankOf() == 1 && variance->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_BP_MKLDNN op: wrong shape of variance array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(variance).c_str());
|
|
if(gamma != nullptr)
|
|
REQUIRE_TRUE(gamma->rankOf() == 1 && gamma->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_BP_MKLDNN op: wrong shape of gamma array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(gamma).c_str());
|
|
if(beta != nullptr)
|
|
REQUIRE_TRUE(beta->rankOf() == 1 && beta->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_BP_MKLDNN op: wrong shape of beta array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(beta).c_str());
|
|
|
|
// types of all input arrays should be the same
|
|
for(int i = 1; i < block.width() - 1; ++i)
|
|
REQUIRE_TRUE(INPUT_VARIABLE(0)->dataType() == INPUT_VARIABLE(i)->dataType(), 0, "BATCHNORM_BP_MKLDNN op: types of all input arrays should be the same !");
|
|
|
|
|
|
NDArray *weights = nullptr, *dLdW = nullptr;
|
|
|
|
if(applyScale || applyOffset) {
|
|
weights = new NDArray(input->ordering(), {2, input->sizeAt(axes[0])}, input->dataType());
|
|
dLdW = new NDArray(input->ordering(), {2, input->sizeAt(axes[0])}, input->dataType());
|
|
if(applyScale)
|
|
(*weights)({0,1, 0,0}).assign(gamma);
|
|
else
|
|
(*weights)({0,1, 0,0}).assign(1);
|
|
if(applyOffset)
|
|
(*weights)({1,2, 0,0}).assign(beta);
|
|
else
|
|
(*weights)({1,2, 0,0}).assign(0);
|
|
}
|
|
|
|
const bool isNCHW = !(axes[0] == inRank - 1 && inRank > 2);
|
|
|
|
if (shape::strideDescendingCAscendingF(dLdO->shapeInfo()))
|
|
batchnormBackPropMKLDNN(input, mean, variance, *dLdO, weights, dLdI, dLdW, epsilon, isNCHW);
|
|
else
|
|
batchnormBackPropMKLDNN(input, mean, variance, dLdO->dup(), weights, dLdI, dLdW, epsilon, isNCHW);
|
|
|
|
*dLdM = 0;
|
|
*dLdV = 0;
|
|
|
|
if(applyScale || applyOffset) {
|
|
if(applyScale)
|
|
dLdG->assign((*dLdW)({0,1, 0,0}));
|
|
if(applyOffset)
|
|
dLdB->assign((*dLdW)({1,2, 0,0}));
|
|
|
|
delete weights;
|
|
delete dLdW;
|
|
}
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
PLATFORM_CHECK(batchnorm_bp, ENGINE_CPU) {
|
|
|
|
NDArray* input = INPUT_VARIABLE(0); // 2D:nc, 4D:nchw, 5D:ncdhw
|
|
NDArray* mean = INPUT_VARIABLE(1); // [c]
|
|
NDArray* variance = INPUT_VARIABLE(2); // [c]
|
|
NDArray* dLdO = INPUT_VARIABLE(3); // same as input
|
|
NDArray* gamma = nullptr; // [c]
|
|
NDArray* beta = nullptr; // [c]
|
|
|
|
NDArray* dLdI = OUTPUT_VARIABLE(0); // same as input
|
|
NDArray* dLdM = OUTPUT_VARIABLE(1); // [c]
|
|
NDArray* dLdV = OUTPUT_VARIABLE(2); // [c]
|
|
NDArray* dLdG = nullptr; // [c]
|
|
NDArray* dLdB = nullptr; // [c]
|
|
|
|
const bool applyScale = (bool)INT_ARG(0);
|
|
const bool applyOffset = (bool)INT_ARG(1);
|
|
|
|
if(applyScale) {
|
|
gamma = INPUT_VARIABLE(4);
|
|
dLdG = OUTPUT_VARIABLE(3);
|
|
}
|
|
if(applyOffset) {
|
|
beta = INPUT_VARIABLE(4 + (int)applyScale);
|
|
dLdB = OUTPUT_VARIABLE(3 + (int)applyScale);
|
|
}
|
|
|
|
const int numOfIntArgs = block.getIArguments()->size();
|
|
std::vector<int> axes;
|
|
if(numOfIntArgs > 2)
|
|
for(int i = 2; i < numOfIntArgs; ++i)
|
|
axes.push_back(INT_ARG(i));
|
|
else
|
|
axes.push_back(input->rankOf()-1); // default dimension to reduce along is last dimension
|
|
|
|
DataType inputType = input->dataType();
|
|
DataType meanType = mean->dataType();
|
|
DataType varType = variance->dataType();
|
|
DataType dLdOType = dLdO->dataType();
|
|
DataType gammaType = gamma != nullptr ? gamma->dataType() : DataType::FLOAT32;
|
|
DataType betaType = beta != nullptr ? beta->dataType() : DataType::FLOAT32;
|
|
|
|
DataType dLdIType = dLdI->dataType();
|
|
DataType dLdGType = gamma != nullptr ? dLdG->dataType() : DataType::FLOAT32;
|
|
DataType dLdBType = beta != nullptr ? dLdB->dataType() : DataType::FLOAT32;
|
|
|
|
const int inRank = input->rankOf();
|
|
|
|
return block.isUseMKLDNN() && axes.size() == 1 && (axes[0] == 1 || axes[0] == inRank - 1) && (inRank == 2 || inRank == 4 || inRank == 5) &&
|
|
(inputType == DataType::FLOAT32 && meanType == DataType::FLOAT32 && varType == DataType::FLOAT32 &&
|
|
dLdOType == DataType::FLOAT32 && gammaType == DataType::FLOAT32 && betaType == DataType::FLOAT32 &&
|
|
dLdIType == DataType::FLOAT32 && dLdGType == DataType::FLOAT32 && dLdBType == DataType::FLOAT32);
|
|
}
|
|
|
|
}
|
|
}
|
|
} |