236 lines
11 KiB
Plaintext
236 lines
11 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Yurii Shyrma, created on 16.04.2018
|
|
//
|
|
|
|
#include <ops/declarable/helpers/reverse.h>
|
|
#include <helpers/ShapeUtils.h>
|
|
#include <array/ResultSet.h>
|
|
#include <helpers/TAD.h>
|
|
#include <helpers/PointersManager.h>
|
|
#include <helpers/ConstantTadHelper.h>
|
|
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
namespace helpers {
|
|
|
|
template <typename T>
|
|
static __global__ void reverseTadKernel(const void* vinput, const Nd4jLong *inputShape, void* voutput, const Nd4jLong *outputShape, const Nd4jLong *inputTadShape, const Nd4jLong *inputTadOffsets, const Nd4jLong *outputTadShape, const Nd4jLong *outputTadOffsets, uint64_t limit, uint64_t numOfElemsToReverse, uint64_t numTads) {
|
|
auto input = reinterpret_cast<const T*>(vinput);
|
|
auto output = reinterpret_cast<T*>(voutput);
|
|
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
const auto step = gridDim.x * blockDim.x;
|
|
|
|
// this means that we'll have additional cycle, to move middle element
|
|
auto div = numOfElemsToReverse / 2;
|
|
auto odd = numOfElemsToReverse % 2 != 0;
|
|
auto rlimit = odd ? limit / 2 + 1 : limit / 2;
|
|
|
|
// all threads operate in the same input/output space
|
|
for (uint64_t e = tid; e < rlimit; e += step) {
|
|
// finding out the TAD we're going to process
|
|
auto tadId = e / div;
|
|
|
|
if (tadId >= numTads)
|
|
continue;
|
|
|
|
// now finding out element within tad
|
|
auto idx = e % div;
|
|
|
|
//printf("TID: %i; numTads: %lld; tadLength: %lld; tadId: %i, idx: %lld\n", tid, numTads, numOfElemsToReverse, tadId, idx);
|
|
|
|
auto tadInput = input + inputTadOffsets[tadId];
|
|
auto tadOutput = output + outputTadOffsets[tadId];
|
|
|
|
// we're calculating offsets within input TAD
|
|
auto fOffset = shape::getIndexOffset(idx, inputTadShape);
|
|
auto lOffset = shape::getIndexOffset(numOfElemsToReverse - idx - 1, inputTadShape);
|
|
|
|
// now we're storing input values
|
|
auto v1 = tadInput[fOffset];
|
|
auto v2 = tadInput[lOffset];
|
|
|
|
// now we're calculating offsets within output TAD
|
|
auto zfOffset = shape::getIndexOffset(idx, outputTadShape);
|
|
auto zlOffset = shape::getIndexOffset(numOfElemsToReverse - idx - 1, outputTadShape);
|
|
|
|
// and saving values to output arrays
|
|
tadOutput[zfOffset] = v2;
|
|
tadOutput[zlOffset] = v1;
|
|
}
|
|
|
|
// moving odd element in blocks
|
|
if (odd && threadIdx.x == 0) {
|
|
for (uint64_t e = blockIdx.x; e < numTads; e += gridDim.x) {
|
|
auto tadInput = input + inputTadOffsets[e];
|
|
auto tadOutput = output + outputTadOffsets[e];
|
|
|
|
auto xOffset = shape::getIndexOffset(numOfElemsToReverse / 2, inputTadShape);
|
|
auto zOffset = shape::getIndexOffset(numOfElemsToReverse / 2, outputTadShape);
|
|
|
|
tadOutput[zOffset] = tadInput[xOffset];
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
static __global__ void reverseArrayKernel(const void* input, const Nd4jLong *inputShape, void* output, const Nd4jLong *outputShape, Nd4jLong numOfElemsToReverse) {
|
|
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
const auto step = gridDim.x * blockDim.x;
|
|
__shared__ int linearStatus;
|
|
__shared__ const T* inputArr;
|
|
__shared__ T* outputArr;
|
|
__shared__ char inputOrder, outputOrder;
|
|
|
|
if (threadIdx.x == 0) {
|
|
linearStatus = (shape::elementWiseStride(inputShape) == shape::elementWiseStride(outputShape)) && (inputOrder == outputOrder)? shape::elementWiseStride(inputShape):0;
|
|
|
|
char inputOrder = shape::order(inputShape);
|
|
char outputOrder = shape::order(outputShape);
|
|
inputArr = reinterpret_cast<const T*>(input);
|
|
outputArr = reinterpret_cast<T*>(output);
|
|
}
|
|
__syncthreads();
|
|
|
|
auto odd = numOfElemsToReverse % 2 != 0;
|
|
auto limit = numOfElemsToReverse / 2;
|
|
|
|
for (uint64_t e = tid; e < limit; e += step) {
|
|
// we're calculating offsets within input array
|
|
auto fOffset = shape::getIndexOffset(e, inputShape);
|
|
auto lOffset = shape::getIndexOffset(numOfElemsToReverse - e - 1, inputShape);
|
|
|
|
// now we're storing input values
|
|
auto v1 = inputArr[fOffset];
|
|
auto v2 = inputArr[lOffset];
|
|
|
|
// now we're calculating offsets within output array
|
|
auto zfOffset = shape::getIndexOffset(e, outputShape);
|
|
auto zlOffset = shape::getIndexOffset(numOfElemsToReverse - e - 1, outputShape);
|
|
|
|
// and saving values to output arrays
|
|
outputArr[zfOffset] = v2;
|
|
outputArr[zlOffset] = v1;
|
|
}
|
|
|
|
// in case of odd array we'll have to move middle value
|
|
if (odd && tid == 0) {
|
|
auto xOffset = shape::getIndexOffset(limit, inputShape);
|
|
auto zOffset = shape::getIndexOffset(limit, outputShape);
|
|
|
|
outputArr[zOffset] = inputArr[xOffset];
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
static void reverseTad(sd::LaunchContext * context, const NDArray* input, NDArray* output, const Nd4jLong *inputTadShape, const Nd4jLong *inputTadOffsets, const Nd4jLong *outputTadShape, const Nd4jLong *outputTadOffsets, uint64_t tadLength) {
|
|
auto stream = context->getCudaStream();
|
|
reverseTadKernel<T><<<256, 512, 8192, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo(), inputTadShape, inputTadOffsets, outputTadShape, outputTadOffsets, input->lengthOf(), tadLength, input->lengthOf() / tadLength);
|
|
}
|
|
|
|
template<typename T>
|
|
static void reverseArray(sd::LaunchContext * context, const NDArray* input, NDArray* output, Nd4jLong numOfElemsToReverse) {
|
|
auto stream = context->getCudaStream();
|
|
Nd4jLong numOfReverse = numOfElemsToReverse;
|
|
if (numOfElemsToReverse == 0)
|
|
numOfReverse = input->lengthOf();
|
|
|
|
reverseArrayKernel<T><<<256, 512, 8192, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo(), numOfReverse);
|
|
}
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
template <typename T>
|
|
static void reverseSequence_(sd::LaunchContext * context, const NDArray* input, const NDArray* seqLengths, NDArray* output, int seqDim, const int batchDim){
|
|
int posOfNonUnityDim = -1;
|
|
seqLengths->syncToHost();
|
|
auto stream = context->getCudaStream();
|
|
|
|
if(input->isVector() || shape::isLikeVector(input->shapeInfo(), posOfNonUnityDim) || seqLengths->lengthOf() == 1) {
|
|
int numOfElemsToReverse = seqLengths->e<int>(0);
|
|
if((seqDim == 0 && input->sizeAt(0) == 1) || (batchDim == posOfNonUnityDim))
|
|
output->assign(input);
|
|
else
|
|
reverseArrayKernel<T><<<256, 512, 8192, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo(), numOfElemsToReverse);//helpers::reverseArray<T>(context, const_cast<NDArray*>(input), output, numOfElemsToReverse);
|
|
}
|
|
else {
|
|
|
|
if(seqDim > batchDim)
|
|
--seqDim;
|
|
|
|
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {batchDim});
|
|
|
|
auto inSubArrsSet = input->allTensorsAlongDimension(dimensions);
|
|
auto outSubArrsSet = output->allTensorsAlongDimension(dimensions);
|
|
|
|
for(int i = 0; i < inSubArrsSet.size(); ++i) {
|
|
|
|
int numOfElemsToReverse = seqLengths->e<int>(i);
|
|
|
|
if(numOfElemsToReverse == 0 || numOfElemsToReverse == 1) {
|
|
outSubArrsSet.at(i)->assign(inSubArrsSet.at(i));
|
|
}
|
|
else {
|
|
auto inInnerSet = inSubArrsSet.at(i)->allTensorsAlongDimension({seqDim});
|
|
auto outInnerSet = outSubArrsSet.at(i)->allTensorsAlongDimension({seqDim});
|
|
for(int j = 0; j < inInnerSet.size(); ++j)
|
|
reverseArray<T>(context, inInnerSet.at(j), outInnerSet.at(j), numOfElemsToReverse);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void reverseSequence(sd::LaunchContext * context, const NDArray* input, const NDArray* seqLengths, NDArray* output, int seqDim, const int batchDim) {
|
|
NDArray::prepareSpecialUse({output}, {input, seqLengths});
|
|
|
|
// if op isn't inplace - copy original data into output array
|
|
if (output->specialBuffer() != input->specialBuffer())
|
|
output->assign(input);
|
|
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), reverseSequence_, (context, input, seqLengths, output, seqDim, batchDim), LIBND4J_TYPES);
|
|
NDArray::registerSpecialUse({output}, {input, seqLengths});
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
void reverse(sd::LaunchContext * context, const NDArray* input, NDArray* output, const std::vector<int>* intArgs, bool isBackProp) {
|
|
// we need to reverse axis only if that's new op
|
|
std::vector<int> dimensions = isBackProp ? ShapeUtils::evalDimsToExclude(input->rankOf(), *intArgs) : *intArgs;
|
|
std::vector<int> axis = ShapeUtils::evalDimsToExclude(input->rankOf(), dimensions);
|
|
auto packX = sd::ConstantTadHelper::getInstance()->tadForDimensions(input->shapeInfo(), dimensions);
|
|
auto packZ = sd::ConstantTadHelper::getInstance()->tadForDimensions(output->shapeInfo(), dimensions);
|
|
|
|
|
|
|
|
NDArray::prepareSpecialUse({output}, {input});
|
|
|
|
if (packX.numberOfTads() == 1) {
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), reverseArray, (context, input, output, 0), LIBND4J_TYPES);
|
|
} else {
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), reverseTad, (context, input, output, packX.platformShapeInfo(), packX.platformOffsets(), packZ.platformShapeInfo(), packZ.platformOffsets(), (uint64_t) (input->lengthOf() / packX.numberOfTads())), LIBND4J_TYPES);
|
|
}
|
|
|
|
NDArray::registerSpecialUse({output}, {input});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|