117 lines
5.7 KiB
Plaintext
117 lines
5.7 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author George A. Shulinok <sgazeos@gmail.com>
|
|
//
|
|
#include <ops/declarable/helpers/matrix_band.h>
|
|
#include <helpers/TAD.h>
|
|
#include <exceptions/cuda_exception.h>
|
|
#include <helpers/ShapeUtils.h>
|
|
#include <helpers/ConstantTadHelper.h>
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
namespace helpers {
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// matrix band kernel
|
|
//
|
|
// inputBuffer - buffer of input tensor
|
|
// inputShape - shape of input tensor
|
|
// outputBuffer - buffer of output tensor
|
|
// outputShape - shape of output tensor
|
|
// lowerBand - lower band of matrix
|
|
// upperBand - upper band of matrix
|
|
// tadOnlyInputShapeInfo - TAD shape for input
|
|
// tadInputOffsets - TAD offsets for input
|
|
// tadOnlyOutputShapeInfo - TAD output shape
|
|
// tadOutputOffsets - TAD output offsets
|
|
// numTads - number of subarrays
|
|
// inputLength - input subarray length
|
|
//
|
|
template <typename T>
|
|
static __global__ void matrixBandKernel(const void* inputBuffer, const Nd4jLong* inputShape,
|
|
void* outputBuffer, const Nd4jLong* outputShape,
|
|
Nd4jLong lowerBand, Nd4jLong upperBand,
|
|
const Nd4jLong* tadOnlyInputShapeInfo, const Nd4jLong* tadInputOffsets,
|
|
const Nd4jLong* tadOnlyOutputShapeInfo, const Nd4jLong* tadOutputOffsets,
|
|
Nd4jLong numTads,
|
|
Nd4jLong inputLength) {
|
|
int totalThreads = blockDim.x;
|
|
Nd4jLong rows = shape::sizeAt(inputShape, -2);
|
|
Nd4jLong cols = shape::sizeAt(inputShape, -1);
|
|
for (Nd4jLong e = blockIdx.x; e < numTads; e += gridDim.x) {
|
|
auto yOffset = tadInputOffsets[e];
|
|
auto xOffset = tadOutputOffsets[e];
|
|
for (Nd4jLong i = blockIdx.y; i < rows; i += gridDim.y) {
|
|
for (Nd4jLong j = threadIdx.x; j < cols; j += totalThreads) {
|
|
Nd4jLong coords[2] = {i, j};
|
|
Nd4jLong tadOffsetOut = shape::getOffset(tadOnlyOutputShapeInfo, coords);
|
|
Nd4jLong tadOffsetIn = shape::getOffset(tadOnlyInputShapeInfo, coords);
|
|
|
|
if (i >= j) { // check lower diagonals
|
|
if (lowerBand > 0) {
|
|
if ((i - j) > lowerBand)
|
|
*(reinterpret_cast<T *>(outputBuffer) + xOffset + tadOffsetOut) = T(0);
|
|
else
|
|
*(reinterpret_cast<T *>(outputBuffer) + xOffset + tadOffsetOut) = *(
|
|
reinterpret_cast<T const *>(inputBuffer) + yOffset + tadOffsetIn);
|
|
}
|
|
} else if (j > i) {
|
|
if (upperBand > 0)
|
|
if ((j - i) > upperBand)
|
|
*(reinterpret_cast<T *>(outputBuffer) + xOffset + tadOffsetOut) = T(0);
|
|
else
|
|
*(reinterpret_cast<T *>(outputBuffer) + xOffset + tadOffsetOut) = *(
|
|
reinterpret_cast<T const *>(inputBuffer) + yOffset + tadOffsetIn);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// matrixBandPart_ - main algorithm caller
|
|
//
|
|
template <typename T>
|
|
void matrixBandPart_(sd::LaunchContext * context, NDArray* input, NDArray* output, Nd4jLong lowerBand, Nd4jLong upperBand) {
|
|
dim3 launchDims(256, 512, 8192);
|
|
auto stream = context->getCudaStream();
|
|
|
|
std::vector<int> lastDims({input->rankOf() - 2, input->rankOf() - 1});
|
|
std::vector<int> dimsToExclude = ShapeUtils::evalDimsToExclude(input->rankOf(), lastDims);
|
|
|
|
auto packX = sd::ConstantTadHelper::getInstance()->tadForDimensions(input->shapeInfo(), lastDims);
|
|
auto packZ = sd::ConstantTadHelper::getInstance()->tadForDimensions(output->shapeInfo(), lastDims);
|
|
|
|
const Nd4jLong numTads = packX.numberOfTads();
|
|
|
|
NDArray::prepareSpecialUse({output}, {input});
|
|
matrixBandKernel<T><<<launchDims.x, launchDims.y, launchDims.z, *stream>>>(input->specialBuffer(),
|
|
input->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo(),
|
|
lowerBand, upperBand, packX.specialShapeInfo(), packX.specialOffsets(), packZ.specialShapeInfo(), packZ.specialOffsets(), numTads, input->lengthOf());
|
|
NDArray::registerSpecialUse({output}, {input});
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
void matrixBandPart(sd::LaunchContext * context, NDArray* input, NDArray* output, Nd4jLong lowerBand, Nd4jLong upperBand) {
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), matrixBandPart_, (context, input, output, lowerBand, upperBand), FLOAT_TYPES);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|