Go to file
Yurii Shyrma e700b59f80
Shyrma weights format (#329)
* - start to introduce additional weights formats into conv2d ops

Signed-off-by: Yurii <iuriish@yahoo.com>

* - provide weights format variety in backprop conv2d and deconv2d ops, testing and fixing bugs

Signed-off-by: Yurii <iuriish@yahoo.com>

* - forgot to recover kernels sizes in deconv2d_bp test

Signed-off-by: Yurii <iuriish@yahoo.com>

* - built in weights format in depthwise conv 2d op

Signed-off-by: Yurii <iuriish@yahoo.com>

* - provide new weights formats in mkl dnn conv ops

Signed-off-by: Yurii <iuriish@yahoo.com>

* - provide new weights formats in cuda conv helpers

Signed-off-by: Yurii <iuriish@yahoo.com>

* - working with new weights format in cudnn conv api

Signed-off-by: Yurii <iuriish@yahoo.com>

* - take into account order of arrays in cudnn tensor descriptions

Signed-off-by: Yurii <iuriish@yahoo.com>

* - provide new weights formats in cpu conv3d (ff/bp)

Signed-off-by: Yurii <iuriish@yahoo.com>

* - provide new weights formats in cpu deconv3d (ff/bp)

Signed-off-by: Yurii <iuriish@yahoo.com>

* - provide new weights formats in conv3d ops (ff/bp) based on mkl api

Signed-off-by: Yurii <iuriish@yahoo.com>

* - provide new weights formats in conv3d ops (ff/bp) based on cudnn api

Signed-off-by: Yurii <iuriish@yahoo.com>

* - resolve conflicts 2

Signed-off-by: Yurii <iuriish@yahoo.com>

Co-authored-by: raver119 <raver119@gmail.com>
2020-03-20 12:11:27 +03:00
.github Update contributing and issue/PR templates (#7934) 2019-06-22 16:21:27 +10:00
arbiter #8751 Arbiter grid search candidate generator fix [WIP] (#292) 2020-03-06 12:01:21 +11:00
datavec Support for more numpy datatypes (#241) 2020-03-19 00:48:37 +11:00
deeplearning4j DL4J integrations tests updates + add SameDiff support (#298) 2020-03-07 22:44:41 +11:00
docs Mention the new % unit for maxBytes and maxPhysicalBytes in Memory management documentation (#8435) (#8461) 2019-12-05 12:47:53 +09:00
jumpy Update links to eclipse repos (#252) 2019-09-10 19:09:46 +10:00
libnd4j Shyrma weights format (#329) 2020-03-20 12:11:27 +03:00
nd4j AdaGrad validation test (#334) 2020-03-20 17:25:46 +11:00
nd4s Test fixes + cleanup (#245) 2020-02-18 10:29:06 +11:00
pydatavec Minor edits to README for pydatavec and pydl4j (#8336) 2019-12-06 08:10:38 +01:00
pydl4j Eclipse -> Konduit update (#188) 2020-01-27 16:03:00 +11:00
rl4j Merge remote-tracking branch 'eclipse/master' 2020-03-18 16:17:14 +09:00
scalnet Add support for CUDA 10.2 (#89) 2019-11-29 16:31:03 +11:00
.gitignore Remove the two files that get generated by javacpp to avoid conflicts. Also add them to .gitignore 2020-03-10 10:05:56 +00:00
CONTRIBUTING.md Various fixes (#43) 2019-11-14 19:38:20 +11:00
Jenkinsfile Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
LICENSE Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
README.md Eclipse -> Konduit update (#188) 2020-01-27 16:03:00 +11:00
change-cuda-versions.sh Add support for CUDA 10.2 (#89) 2019-11-29 16:31:03 +11:00
change-scala-versions.sh Version upgrades (#199) 2019-08-30 14:35:27 +10:00
perform-release.sh Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
pom.xml Fixes #8763 (#310) 2020-03-19 14:53:21 +09:00

README.md

Monorepo of Deeplearning4j

Welcome to the new monorepo of Deeplearning4j that contains the source code for all the following projects, in addition to the original repository of Deeplearning4j moved to deeplearning4j:

To build everything, we can use commands like

./change-cuda-versions.sh x.x
./change-scala-versions.sh 2.xx
./change-spark-versions.sh x
mvn clean install -Dmaven.test.skip -Dlibnd4j.cuda=x.x -Dlibnd4j.compute=xx

or

mvn -B -V -U clean install -pl '!jumpy,!pydatavec,!pydl4j' -Dlibnd4j.platform=linux-x86_64 -Dlibnd4j.chip=cuda -Dlibnd4j.cuda=9.2 -Dlibnd4j.compute=<your GPU CC> -Djavacpp.platform=linux-x86_64 -Dmaven.test.skip=true

An example of GPU "CC" or compute capability is 61 for Titan X Pascal.

Want some examples?

We have separate repository with various examples available: https://github.com/eclipse/deeplearning4j-examples

In the examples repo, you'll also find a tutorial series in Zeppelin: https://github.com/eclipse/deeplearning4j-examples/tree/master/tutorials