71 lines
3.2 KiB
C++
71 lines
3.2 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author GS <sgazeos@gmail.com>
|
|
//
|
|
|
|
#include <ops/declarable/CustomOperations.h>
|
|
|
|
namespace nd4j {
|
|
namespace ops {
|
|
CUSTOM_OP_IMPL(relu_layer, 3, 1, false, 0, 0) {
|
|
auto x = INPUT_VARIABLE(0);
|
|
auto w = INPUT_VARIABLE(1);
|
|
auto b = INPUT_VARIABLE(2);
|
|
|
|
REQUIRE_TRUE(x->isMatrix(), 0, "relu_layer: x argument should be a 2D tensor, but got rank %i instead!", x->rankOf());
|
|
REQUIRE_TRUE(w->isMatrix(), 0, "relu_layer: weights argument should be a 2D tensor, but got rank %i instead!", w->rankOf());
|
|
REQUIRE_TRUE(b->isVector(), 0, "relu_layer: biases argument should be a 1D tensor, but got rank %i instead!", b->rankOf());
|
|
REQUIRE_TRUE(b->lengthOf() == w->sizeAt(1), 0, "relu_layer: biases array length should match to columns of weights matrix, however got length = %i and columns = %i!", b->lengthOf(), w->sizeAt(1));
|
|
REQUIRE_TRUE(x->sizeAt(1) == w->sizeAt(0), 0, "relu_layer: number of x columns should match to row number of weights matrix, but got x_columns = %i and weights_rows = %i!",
|
|
x->sizeAt(1), w->sizeAt(0));
|
|
|
|
|
|
auto output = OUTPUT_VARIABLE(0);
|
|
//T bound = (T)0.f;
|
|
//nd4j_printf("Matrix x(%ix%i), Matrix w(%ix%i), b(1x%i)\n", x->sizeAt(0), x->sizeAt(1), w->sizeAt(0), w->sizeAt(1), b->lengthOf());
|
|
|
|
nd4j::ops::xw_plus_b op;
|
|
std::unique_ptr<ResultSet> result(op.execute({x, w, b}, {}, {}, {}));
|
|
REQUIRE_TRUE(Status::OK() == result->status(), 0, "relu_layer: xw_plus_b op failed on input data.");
|
|
|
|
auto scalar = block.numT() > 0 ? block.getTArguments()->at(0) : 0.0;
|
|
|
|
auto xw = result->at(0);
|
|
xw->applyScalar(nd4j::scalar::RELU, scalar, output);
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
DECLARE_SHAPE_FN(relu_layer) {
|
|
auto inShape = inputShape->at(0);
|
|
auto weightsShape = inputShape->at(1);
|
|
auto outputShape = ShapeUtils::matrixProductShape(inShape, weightsShape, false, false, ArrayOptions::dataType(inShape), block.getWorkspace());
|
|
|
|
return SHAPELIST(CONSTANT(outputShape));
|
|
}
|
|
|
|
DECLARE_TYPES(relu_layer) {
|
|
getOpDescriptor()
|
|
->setAllowedInputTypes(nd4j::DataType::ANY)
|
|
// ->setAllowedInputTypes(1, {ALL_FLOATS})
|
|
->setAllowedOutputTypes({ALL_FLOATS});
|
|
}
|
|
}
|
|
}
|
|
|