cavis/libnd4j/tests_cpu/layers_tests/OpsArena.cpp

201 lines
7.0 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// Created by raver119 on 11.10.2017.
//
// This "set of tests" is special one - we don't check ops results here. we just check for memory equality BEFORE op launch and AFTER op launch
//
//
#include "testlayers.h"
#include <vector>
#include <ops/declarable/CustomOperations.h>
#include <ops/declarable/OpTuple.h>
#include <ops/declarable/OpRegistrator.h>
#include <memory/MemoryReport.h>
#include <memory/MemoryUtils.h>
#include <MmulHelper.h>
using namespace nd4j;
using namespace nd4j::ops;
class OpsArena : public testing::Test {
public:
const int numIterations = 0;
std::vector<OpTuple *> tuples;
OpsArena() {
// nd4j_printf("\nStarting memory tests...\n","");
// conv2d_bp
tuples.push_back((new OpTuple("conv2d_bp"))
->addInput(NDArrayFactory::create_<float>('c', {2, 1, 4, 4}))
->addInput(NDArrayFactory::create_<float>('c', {3, 3, 1, 2}))
//->addInput(new NDArray<float>('c', {2, 1}))
->addInput(NDArrayFactory::create_<float>('c', {2, 2, 4, 4}))
->setIArgs({3, 3, 1, 1, 0, 0, 1, 1, 1}));
// mergeavg
tuples.emplace_back((new OpTuple("mergeavg"))
->addInput(NDArrayFactory::create_<float>('c', {100, 100}))
->addInput(NDArrayFactory::create_<float>('c', {100, 100}))
->addInput(NDArrayFactory::create_<float>('c', {100, 100}))
->addInput(NDArrayFactory::create_<float>('c', {100, 100})));
// mergemax
auto mergeMax_X0 = NDArrayFactory::create_<float>('c', {100, 100});
auto mergeMax_X1 = NDArrayFactory::create_<float>('c', {100, 100});
auto mergeMax_X2 = NDArrayFactory::create_<float>('c', {100, 100});
tuples.push_back(new OpTuple("mergemax", {mergeMax_X0, mergeMax_X1, mergeMax_X2}, {}, {}));
// conv2d
auto conv2d_Input = NDArrayFactory::create_<float>('c', {1, 2, 5, 4});
auto conv2d_Weights = NDArrayFactory::create_<float>('c', {2, 2, 2, 3});
auto conv2d_Bias = NDArrayFactory::create_<float>('c', {3, 1});
tuples.push_back(new OpTuple("conv2d", {conv2d_Input, conv2d_Weights, conv2d_Bias}, {}, {2, 2, 1, 1, 0, 0, 1, 1, 1, 0}));
// test custom op
tuples.emplace_back((new OpTuple("testcustom"))
->setIArgs({1, 2})
->addInput(NDArrayFactory::create_<float>('c', {100, 100})));
// deconv2d
tuples.emplace_back((new OpTuple("deconv2d"))
->addInput(NDArrayFactory::create_<float>('c', {2, 3, 4, 4}))
->addInput(NDArrayFactory::create_<float>('c', {5, 5, 3, 3}))
->setIArgs({5, 5, 1, 1, 0, 0, 1, 1, 0, 0}));
// maxpool2d
tuples.emplace_back((new OpTuple("maxpool2d"))
->addInput(NDArrayFactory::create_<float>('c', {2, 1, 28, 28}))
->setIArgs({5, 5, 1, 1, 0, 0, 2, 2, 0}));
}
~OpsArena() {
for (auto v: tuples)
delete v;
}
};
TEST_F(OpsArena, TestFeedForward) {
nd4j::ops::mergeavg op0;
nd4j::ops::mergemax op1;
#ifdef _WIN32
if (1 > 0)
return;
#endif
for (auto tuple: tuples) {
auto op = OpRegistrator::getInstance()->getOperation(tuple->_opName);
if (op == nullptr) {
// nd4j_printf("Can't find Op by name: [%s]\n", tuple->_opName);
ASSERT_TRUE(false);
}
// nd4j_printf("Testing op [%s]\n", tuple->_opName);
nd4j::memory::MemoryReport before, after;
// warmup
auto tmp1 = op->execute(tuple->_inputs, tuple->_tArgs, tuple->_iArgs);
auto tmp2 = op->execute(tuple->_inputs, tuple->_tArgs, tuple->_iArgs);
delete tmp1;
delete tmp2;
auto b = nd4j::memory::MemoryUtils::retrieveMemoryStatistics(before);
if (!b)
ASSERT_TRUE(false);
for (int e = 0; e < numIterations; e++) {
auto result = op->execute(tuple->_inputs, tuple->_tArgs, tuple->_iArgs);
// we just want to be sure op was executed successfully
ASSERT_TRUE(result->size() > 0);
delete result;
}
auto a = nd4j::memory::MemoryUtils::retrieveMemoryStatistics(after);
if (!a)
ASSERT_TRUE(false);
// this is our main assertion. memory footprint after op run should NOT be higher then before
if (after > before) {
// nd4j_printf("WARNING!!! OpName: [%s]; RSS before: [%lld]; RSS after: [%lld]\n", tuple->_opName, before.getRSS(), after.getRSS())
// ASSERT_TRUE(after <= before);
}
}
}
TEST_F(OpsArena, TestMmulHelper1) {
auto a = NDArrayFactory::create<float>('c', {100, 100});
auto b = NDArrayFactory::create<float>('c', {100, 100});
auto c = NDArrayFactory::create<float>('c', {100, 100});
nd4j::MmulHelper::mmul(&a, &b, &c);
nd4j::memory::MemoryReport before, after;
nd4j::memory::MemoryUtils::retrieveMemoryStatistics(before);
for (int e = 0; e < numIterations; e++) {
nd4j::MmulHelper::mmul(&a, &b, &c);
}
nd4j::memory::MemoryUtils::retrieveMemoryStatistics(after);
if (after > before) {
// nd4j_printf("WARNING!!! OpName: [%s]; RSS before: [%lld]; RSS after: [%lld]\n", "mmulHelper", before.getRSS(), after.getRSS())
//ASSERT_TRUE(after <= before);
}
}
TEST_F(OpsArena, TestMmulHelper2) {
auto a = NDArrayFactory::create<float>('c', {100, 100});
auto b = NDArrayFactory::create<float>('c', {100, 100});
auto c = nd4j::MmulHelper::mmul(&a, &b);
delete c;
nd4j::memory::MemoryReport before, after;
nd4j::memory::MemoryUtils::retrieveMemoryStatistics(before);
for (int e = 0; e < numIterations; e++) {
c = nd4j::MmulHelper::mmul(&a, &b);
delete c;
}
nd4j::memory::MemoryUtils::retrieveMemoryStatistics(after);
if (after > before) {
// nd4j_printf("WARNING!!! OpName: [%s]; RSS before: [%lld]; RSS after: [%lld]\n", "mmulHelper", before.getRSS(), after.getRSS())
ASSERT_TRUE(after <= before);
}
}