397 lines
12 KiB
C++
397 lines
12 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author raver119@gmail.com, created on 07.10.2017.
|
|
// @author Yurii Shyrma (iuriish@yahoo.com)
|
|
//
|
|
|
|
|
|
#include <pointercast.h>
|
|
#include <helpers/shape.h>
|
|
#include <helpers/TAD.h>
|
|
#include <specials.h>
|
|
#include <dll.h>
|
|
#include <NDArray.h>
|
|
#include <ops/declarable/CustomOperations.h>
|
|
#include <types/types.h>
|
|
|
|
namespace nd4j {
|
|
|
|
/**
|
|
* Concatneate multi array of the same shape together
|
|
* along a particular dimension
|
|
*/
|
|
template <typename T>
|
|
void SpecialMethods<T>::concatCpuGeneric(int dimension, int numArrays, Nd4jPointer *data, Nd4jPointer *inputShapeInfo, void *vresult, Nd4jLong *resultShapeInfo) {
|
|
auto result = reinterpret_cast<T *>(vresult);
|
|
|
|
std::vector<Nd4jLong> iArgs = {dimension};
|
|
std::vector<double> tArgs;
|
|
std::vector<bool> bArgsEmpty;
|
|
std::vector<NDArray*> inputs(numArrays);
|
|
std::vector<NDArray*> outputs(1);
|
|
|
|
outputs[0] = new NDArray(static_cast<void*>(result), static_cast<Nd4jLong*>(resultShapeInfo));
|
|
|
|
for(int i = 0; i < numArrays; ++i)
|
|
inputs[i] = new NDArray(static_cast<void *>(data[i]), static_cast<Nd4jLong*>(inputShapeInfo[i]));
|
|
|
|
nd4j::ops::concat op;
|
|
auto status = op.execute(inputs, outputs, tArgs, iArgs, bArgsEmpty);
|
|
if(status != Status::OK())
|
|
throw std::runtime_error("concatCpuGeneric fails to be executed !");
|
|
|
|
delete outputs[0];
|
|
|
|
for(int i = 0; i < numArrays; ++i)
|
|
delete inputs[i];
|
|
}
|
|
|
|
/**
|
|
* This kernel accumulates X arrays, and stores result into Z
|
|
*
|
|
* @tparam T
|
|
* @param x
|
|
* @param z
|
|
* @param n
|
|
* @param length
|
|
*/
|
|
template<typename T>
|
|
void SpecialMethods<T>::accumulateGeneric(void **vx, void *vz, Nd4jLong *zShapeInfo, int n, const Nd4jLong length) {
|
|
auto z = reinterpret_cast<T *>(vz);
|
|
auto x = reinterpret_cast<T **>(vx);
|
|
|
|
// aggregation step
|
|
#ifdef _OPENMP
|
|
int _threads = omp_get_max_threads();
|
|
#else
|
|
// we can use whatever we want here, this value won't be used if there's no omp
|
|
int _threads = 4;
|
|
#endif
|
|
|
|
PRAGMA_OMP_PARALLEL_FOR_SIMD
|
|
for (Nd4jLong i = 0; i < length; i++) {
|
|
|
|
for (Nd4jLong ar = 0; ar < n; ar++) {
|
|
z[i] += x[ar][i];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* This kernel averages X input arrays, and stores result to Z
|
|
*
|
|
* @tparam T
|
|
* @param x
|
|
* @param z
|
|
* @param n
|
|
* @param length
|
|
* @param propagate
|
|
*/
|
|
template<typename T>
|
|
void SpecialMethods<T>::averageGeneric(void **vx, void *vz, Nd4jLong *zShapeInfo, int n, const Nd4jLong length, bool propagate) {
|
|
auto z = reinterpret_cast<T *>(vz);
|
|
auto x = reinterpret_cast<T **>(vx);
|
|
|
|
if (z == nullptr) {
|
|
//code branch for absent Z
|
|
z = x[0];
|
|
|
|
PRAGMA_OMP_SIMD
|
|
for (Nd4jLong i = 0; i < length; i++) {
|
|
z[i] /= n;
|
|
}
|
|
|
|
#ifdef _OPENNMP
|
|
int _threads = omp_get_max_threads(); //nd4j::math::nd4j_min<int>(omp_get_max_threads() / 2, 4);
|
|
#else
|
|
// we can use whatever we want here, this value won't be used if there's no omp
|
|
int _threads = 4;
|
|
#endif
|
|
|
|
PRAGMA_OMP_PARALLEL_FOR_SIMD
|
|
for (Nd4jLong i = 0; i < length; i++) {
|
|
|
|
for (Nd4jLong ar = 1; ar < n; ar++) {
|
|
z[i] += x[ar][i] / n;
|
|
}
|
|
}
|
|
|
|
// instead of doing element-wise propagation, we just issue memcpy to propagate data
|
|
for (Nd4jLong ar = 1; ar < n; ar++) {
|
|
memcpy(x[ar], z, length * sizeof(T));
|
|
}
|
|
} else {
|
|
// code branch for existing Z
|
|
|
|
// memset before propagation
|
|
memset(z, 0, length * sizeof(T));
|
|
|
|
// aggregation step
|
|
#ifdef _OPENNMP
|
|
int _threads = omp_get_max_threads(); //nd4j::math::nd4j_min<int>(omp_get_max_threads() / 2, 4);
|
|
#else
|
|
// we can use whatever we want here, this value won't be used if there's no omp
|
|
int _threads = 4;
|
|
#endif
|
|
|
|
PRAGMA_OMP_PARALLEL_FOR_SIMD
|
|
for (Nd4jLong i = 0; i < length; i++) {
|
|
|
|
for (Nd4jLong ar = 0; ar < n; ar++) {
|
|
z[i] += x[ar][i] / n;
|
|
}
|
|
}
|
|
|
|
// instead of doing element-wise propagation, we just issue memcpy to propagate data
|
|
for (Nd4jLong ar = 0; ar < n; ar++) {
|
|
memcpy(x[ar], z, length * sizeof(T));
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
Nd4jLong SpecialMethods<T>::getPosition(Nd4jLong *xShapeInfo, Nd4jLong index) {
|
|
auto xEWS = shape::elementWiseStride(xShapeInfo);
|
|
|
|
if (xEWS == 1)
|
|
return index;
|
|
else if (xEWS > 1)
|
|
return index * xEWS;
|
|
else
|
|
return shape::getIndexOffset(index, xShapeInfo, shape::length(xShapeInfo));
|
|
}
|
|
|
|
template<typename T>
|
|
void SpecialMethods<T>::quickSort_parallel_internal(T* array, Nd4jLong *xShapeInfo, int left, int right, int cutoff, bool descending) {
|
|
|
|
int i = left, j = right;
|
|
T tmp;
|
|
T pivot = array[getPosition(xShapeInfo, (left + right) / 2)];
|
|
|
|
|
|
{
|
|
/* PARTITION PART */
|
|
while (i <= j) {
|
|
if (descending) {
|
|
while (array[getPosition(xShapeInfo, i)] > pivot)
|
|
i++;
|
|
while (array[getPosition(xShapeInfo, j)] < pivot)
|
|
j--;
|
|
if (i <= j) {
|
|
tmp = array[getPosition(xShapeInfo, i)];
|
|
array[getPosition(xShapeInfo, i)] = array[getPosition(xShapeInfo, j)];
|
|
array[getPosition(xShapeInfo, j)] = tmp;
|
|
i++;
|
|
j--;
|
|
}
|
|
} else {
|
|
while (array[getPosition(xShapeInfo, i)] < pivot)
|
|
i++;
|
|
while (array[getPosition(xShapeInfo, j)] > pivot)
|
|
j--;
|
|
if (i <= j) {
|
|
tmp = array[getPosition(xShapeInfo, i)];
|
|
array[getPosition(xShapeInfo, i)] = array[getPosition(xShapeInfo, j)];
|
|
array[getPosition(xShapeInfo, j)] = tmp;
|
|
i++;
|
|
j--;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
//
|
|
|
|
if ( ((right-left)<cutoff) ){
|
|
if (left < j){ quickSort_parallel_internal(array, xShapeInfo, left, j, cutoff, descending); }
|
|
if (i < right){ quickSort_parallel_internal(array, xShapeInfo, i, right, cutoff, descending); }
|
|
|
|
}else{
|
|
#pragma omp task
|
|
{ quickSort_parallel_internal(array, xShapeInfo, left, j, cutoff, descending); }
|
|
#pragma omp task
|
|
{ quickSort_parallel_internal(array, xShapeInfo, i, right, cutoff, descending); }
|
|
}
|
|
|
|
}
|
|
|
|
template<typename T>
|
|
void SpecialMethods<T>::quickSort_parallel(void *varray, Nd4jLong *xShapeInfo, Nd4jLong lenArray, int numThreads, bool descending){
|
|
auto array = reinterpret_cast<T *>(varray);
|
|
int cutoff = 1000;
|
|
|
|
PRAGMA_OMP_PARALLEL_THREADS(numThreads)
|
|
{
|
|
#pragma omp single nowait
|
|
{
|
|
quickSort_parallel_internal(array, xShapeInfo, 0, lenArray-1, cutoff, descending);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
template <typename T>
|
|
int SpecialMethods<T>::nextPowerOf2(int number) {
|
|
int pos = 0;
|
|
|
|
while (number > 0) {
|
|
pos++;
|
|
number = number >> 1;
|
|
}
|
|
return (int) pow(2, pos);
|
|
}
|
|
|
|
template <typename T>
|
|
int SpecialMethods<T>::lastPowerOf2(int number) {
|
|
int p = 1;
|
|
while (p <= number)
|
|
p <<= 1;
|
|
|
|
p >>= 1;
|
|
return p;
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
void SpecialMethods<T>::sortGeneric(void *vx, Nd4jLong *xShapeInfo, bool descending) {
|
|
auto x = reinterpret_cast<T *>(vx);
|
|
|
|
quickSort_parallel(x, xShapeInfo, shape::length(xShapeInfo), omp_get_max_threads(), descending);
|
|
}
|
|
|
|
template<typename T>
|
|
void SpecialMethods<T>::sortTadGeneric(void *vx, Nd4jLong *xShapeInfo, int *dimension, int dimensionLength, Nd4jLong *tadShapeInfo, Nd4jLong *tadOffsets, bool descending) {
|
|
auto x = reinterpret_cast<T *>(vx);
|
|
|
|
//quickSort_parallel(x, xShapeInfo, shape::length(xShapeInfo), omp_get_max_threads(), descending);
|
|
Nd4jLong xLength = shape::length(xShapeInfo);
|
|
Nd4jLong xTadLength = shape::tadLength(xShapeInfo, dimension, dimensionLength);
|
|
int numTads = xLength / xTadLength;
|
|
|
|
PRAGMA_OMP_PARALLEL_FOR
|
|
for (int r = 0; r < numTads; r++) {
|
|
T *dx = x + tadOffsets[r];
|
|
|
|
quickSort_parallel(dx, tadShapeInfo, xTadLength, 1, descending);
|
|
}
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
void SpecialMethods<T>::decodeBitmapGeneric(void *dx, Nd4jLong N, void *vz, Nd4jLong *zShapeInfo) {
|
|
auto dz = reinterpret_cast<T *>(vz);
|
|
auto x = reinterpret_cast<int *>(dx);
|
|
Nd4jLong lim = N / 16 + 5;
|
|
|
|
FloatBits2 fb;
|
|
fb.i_ = x[2];
|
|
float threshold = fb.f_;
|
|
|
|
|
|
PRAGMA_OMP_PARALLEL_FOR
|
|
for (Nd4jLong e = 4; e < lim; e++) {
|
|
|
|
for (int bitId = 0; bitId < 16; bitId++) {
|
|
bool hasBit = (x[e] & 1 << (bitId) ) != 0;
|
|
bool hasSign = (x[e] & 1 << (bitId + 16) ) != 0;
|
|
|
|
if (hasBit) {
|
|
if (hasSign)
|
|
dz[(e - 4) * 16 + bitId] -= threshold;
|
|
else
|
|
dz[(e - 4) * 16 + bitId] += threshold;
|
|
} else if (hasSign) {
|
|
dz[(e - 4) * 16 + bitId] -= threshold / 2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template<typename S, typename T>
|
|
void SpecialTypeConverter::convertGeneric(Nd4jPointer * extras, void *dx, Nd4jLong N, void *dz) {
|
|
auto x = reinterpret_cast<S *>(dx);
|
|
auto z = reinterpret_cast<T *>(dz);
|
|
|
|
if (N < nd4j::Environment::getInstance()->elementwiseThreshold()) {
|
|
for (int i = 0; i < N; i++) {
|
|
z[i] = static_cast<T>(x[i]);
|
|
}
|
|
} else {
|
|
|
|
PRAGMA_OMP_PARALLEL_FOR
|
|
for (int i = 0; i < N; i++) {
|
|
z[i] = static_cast<T>(x[i]);
|
|
}
|
|
}
|
|
};
|
|
BUILD_DOUBLE_TEMPLATE(template void SpecialTypeConverter::convertGeneric, (Nd4jPointer * extras, void *dx, Nd4jLong N, void *dz), LIBND4J_TYPES, LIBND4J_TYPES);
|
|
|
|
template<typename T>
|
|
Nd4jLong SpecialMethods<T>::encodeBitmapGeneric(void *vx, Nd4jLong *xShapeInfo, Nd4jLong N, int *dz, float threshold) {
|
|
auto dx = reinterpret_cast<T *>(vx);
|
|
|
|
Nd4jLong retVal = 0L;
|
|
|
|
#pragma omp parallel for schedule(guided) proc_bind(close) reduction(+:retVal)
|
|
for (Nd4jLong x = 0; x < N; x += 16) {
|
|
|
|
int byte = 0;
|
|
int byteId = x / 16 + 4;
|
|
|
|
for (int f = 0; f < 16; f++) {
|
|
Nd4jLong e = x + f;
|
|
|
|
if (e >= N)
|
|
continue;
|
|
|
|
T val = dx[e];
|
|
T abs = nd4j::math::nd4j_abs<T>(val);
|
|
|
|
int bitId = e % 16;
|
|
|
|
if (abs >= (T) threshold) {
|
|
byte |= 1 << (bitId);
|
|
|
|
retVal++;
|
|
|
|
|
|
if (val < (T) 0.0f) {
|
|
byte |= 1 << (bitId + 16);
|
|
dx[e] += threshold;
|
|
} else {
|
|
dx[e] -= threshold;
|
|
}
|
|
} else if (abs >= (T) threshold / (T) 2.0f && val < (T) 0.0f) {
|
|
byte |= 1 << (bitId + 16);
|
|
dx[e] += threshold / 2;
|
|
|
|
retVal++;
|
|
}
|
|
}
|
|
|
|
dz[byteId] = byte;
|
|
}
|
|
|
|
return retVal;
|
|
}
|
|
|
|
BUILD_SINGLE_TEMPLATE(template class SpecialMethods, , LIBND4J_TYPES);
|
|
}
|