cavis/libnd4j/include/ops/declarable/generic/convo/pooling/avgpool3d.cpp

214 lines
13 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 01.03.2018
//
#include <op_boilerplate.h>
#if NOT_EXCLUDED(OP_avgpool3dnew)
#include <ops/declarable/CustomOperations.h>
#include <ops/declarable/helpers/convolutions.h>
namespace nd4j {
namespace ops {
//////////////////////////////////////////////////////////////////////////
CUSTOM_OP_IMPL(avgpool3dnew, 1, 1, false, 0, 14) {
auto input = INPUT_VARIABLE(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW)
auto output = OUTPUT_VARIABLE(0); // [bS, oD, oH, oW, iC] (NDHWC) or [bS, iC, oD, oH, oW] (NCDHW)
int kD = INT_ARG(0); // filter(kernel) depth
int kH = INT_ARG(1); // filter(kernel) height
int kW = INT_ARG(2); // filter(kernel) width
int sD = INT_ARG(3); // strides depth
int sH = INT_ARG(4); // strides height
int sW = INT_ARG(5); // strides width
int pD = INT_ARG(6); // paddings depth
int pH = INT_ARG(7); // paddings height
int pW = INT_ARG(8); // paddings width
int dD = INT_ARG(9); // dilations depth
int dH = INT_ARG(10); // dilations height
int dW = INT_ARG(11); // dilations width
int isSameMode = INT_ARG(12); // 1-SAME, 0-VALID
int extraParam0 = INT_ARG(13);
int isNCDHW = block.getIArguments()->size() > 14 ? !INT_ARG(14) : 1; // 0-NCDHW, 1-NDHWC
REQUIRE_TRUE(input->rankOf() == 5, 0, "AVGPOOL3DNEW OP: rank of input array must be equal to 5, but got %i instead !", input->rankOf());
REQUIRE_TRUE(dD != 0 && dH != 0 && dW != 0, 0, "AVGPOOL3DNEW op: dilation must not be zero, but got instead {%i, %i, %i}", dD, dH, dW);
int bS, iC, iD, iH, iW, oC, oD, oH, oW; // batch size, input channels, input depth/height/width, output channels, output depth/height/width;
int indIOioC, indIOioD, indWoC, indWiC, indWkD; // corresponding indexes
ConvolutionUtils::getSizesAndIndexesConv3d(isNCDHW, *input, *output, bS, iC, iD, iH, iW, oC, oD, oH, oW, indIOioC, indIOioD, indWiC, indWoC, indWkD);
std::string expectedOutputShape = ShapeUtils::shapeAsString(ShapeUtils::composeShapeUsingDimsAndIdx({bS,iC,oD,oH,oW, 0,indIOioC,indIOioD,indIOioD+1,indIOioD+2}));
REQUIRE_TRUE(expectedOutputShape == ShapeUtils::shapeAsString(output), 0, "AVGPOOL3D op: wrong shape of output array, expected is %s, but got %s instead !", expectedOutputShape.c_str(), ShapeUtils::shapeAsString(output).c_str());
if(!isNCDHW) {
input = input->permute({0, 4, 1, 2, 3}); // [bS, iD, iH, iW, iC] -> [bS, iC, iD, iH, iW]
output = output->permute({0, 4, 1, 2, 3}); // [bS, oD, oH, oW, iC] -> [bS, iC, oD, oH, oW]
}
if(isSameMode) // SAME
ConvolutionUtils::calcPadding3D(pD, pH, pW, oD, oH, oW, iD, iH, iW, kD, kH, kW, sD, sH, sW, dD, dH, dW);
//T extraParams[] = {};
ConvolutionUtils::pooling3d(block, *input, *output, kD, kH, kW, sD, sH, sW, pD, pH, pW, dD, dH, dW, 1, extraParam0);
if(!isNCDHW) {
delete input;
delete output;
}
return Status::OK();
}
DECLARE_TYPES(avgpool3dnew) {
getOpDescriptor()
->setAllowedInputTypes(nd4j::DataType::ANY)
->setAllowedOutputTypes({ALL_FLOATS});
}
DECLARE_SHAPE_FN(avgpool3dnew) {
int kD = INT_ARG(0); // filter(kernel) depth
int kH = INT_ARG(1); // filter(kernel) height
int kW = INT_ARG(2); // filter(kernel) width
int sD = INT_ARG(3); // strides depth
int sH = INT_ARG(4); // strides height
int sW = INT_ARG(5); // strides width
int pD = INT_ARG(6); // paddings depth
int pH = INT_ARG(7); // paddings height
int pW = INT_ARG(8); // paddings width
int dD = INT_ARG(9); // dilations depth
int dH = INT_ARG(10); // dilations height
int dW = INT_ARG(11); // dilations width
int isSameMode = INT_ARG(12); // 1-SAME, 0-VALID
int isNCDHW = block.getIArguments()->size() > 14 ? !INT_ARG(14) : 1; // 0-NCDHW, 1-NDHWC
REQUIRE_TRUE(dD != 0 && dH != 0 && dW != 0, 0, "AVGPOOL3DNEW op: dilation must not be zero, but got instead {%i, %i, %i}", dD, dH, dW);
auto inputShapeInfo = inputShape->at(0);
int idxID, idxIC;
if(isNCDHW) { idxID = 2; idxIC = 1;}
else { idxID = 1; idxIC = 4;}
int bS = inputShapeInfo[1]; // batch size
int iC = inputShapeInfo[idxIC+1]; // input channels
int iD = inputShapeInfo[idxID+1]; // input depth
int iH = inputShapeInfo[idxID+2]; // input height
int iW = inputShapeInfo[idxID+3]; // input width
int oD, oH, oW; // output depth, height, width
ConvolutionUtils::calcOutSizePool3D(oD, oH, oW, kD, kH, kW, sD, sH, sW, pD, pH, pW, dD, dH, dW, iD, iH, iW, isSameMode);
Nd4jLong outputShape[5];
outputShape[0] = bS;
if (isNCDHW) {
outputShape[1] = iC;
outputShape[2] = oD;
outputShape[3] = oH;
outputShape[4] = oW;
} else {
outputShape[1] = oD;
outputShape[2] = oH;
outputShape[3] = oW;
outputShape[4] = iC;
}
// TF DOC: A Tensor. Has the same type as input.
return SHAPELIST(ConstantShapeHelper::getInstance()->createShapeInfo(ShapeDescriptor(ArrayOptions::dataType(inputShapeInfo), shape::order(inputShapeInfo), outputShape, 5)));
}
DECLARE_TYPES(avgpool3dnew_bp) {
getOpDescriptor()
->setAllowedInputTypes(nd4j::DataType::ANY)
->setAllowedOutputTypes({ALL_FLOATS});
}
//////////////////////////////////////////////////////////////////////////
CUSTOM_OP_IMPL(avgpool3dnew_bp, 2, 1, false, 0, 14) {
auto input = INPUT_VARIABLE(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW)
auto gradO = INPUT_VARIABLE(1); // [bS, oD, oH, oW, oC] (NDHWC) or [bS, oC, oD, oH, oW] (NCDHW), epsilon_next
auto gradI = OUTPUT_VARIABLE(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW), epsilon
const int kD = INT_ARG(0); // filter(kernel) depth
const int kH = INT_ARG(1); // filter(kernel) height
const int kW = INT_ARG(2); // filter(kernel) width
const int sD = INT_ARG(3); // strides depth
const int sH = INT_ARG(4); // strides height
const int sW = INT_ARG(5); // strides width
int pD = INT_ARG(6); // paddings depth
int pH = INT_ARG(7); // paddings height
int pW = INT_ARG(8); // paddings width
const int dD = INT_ARG(9); // dilations depth
const int dH = INT_ARG(10); // dilations height
const int dW = INT_ARG(11); // dilations width
const int isSameMode = INT_ARG(12); // 1-SAME, 0-VALID
const int extraParam0 = INT_ARG(13); // define what divisor to use while averaging
const int isNCDHW = block.getIArguments()->size() > 14 ? !INT_ARG(14) : 1; // 0-NCDHW, 1-NDHWC
REQUIRE_TRUE(input->rankOf() == 5, 0, "AVGPOOL3DNEW_BP op: input should have rank of 5, but got %i instead", input->rankOf());
REQUIRE_TRUE(dD != 0 && dH != 0 && dW != 0, 0, "AVGPOOL3DNEW_BP op: dilation must not be zero, but got instead {%i, %i, %i}", dD, dH, dW);
int bS, iC, iD, iH, iW, oC, oD, oH, oW; // batch size, input channels, input depth/height/width, output channels, output depth/height/width;
int indIOioC, indIOioD, indWoC, indWiC, indWkD; // corresponding indexes
ConvolutionUtils::getSizesAndIndexesConv3d(isNCDHW, *input, *gradO, bS, iC, iD, iH, iW, oC, oD, oH, oW, indIOioC, indIOioD, indWiC, indWoC, indWkD);
std::string expectedGradOShape = ShapeUtils::shapeAsString(ShapeUtils::composeShapeUsingDimsAndIdx({bS,iC,oD,oH,oW, 0,indIOioC,indIOioD,indIOioD+1,indIOioD+2}));
std::string expectedGradIShape = ShapeUtils::shapeAsString(ShapeUtils::composeShapeUsingDimsAndIdx({bS,iC,iD,iH,iW, 0,indIOioC,indIOioD,indIOioD+1,indIOioD+2}));
REQUIRE_TRUE(expectedGradOShape == ShapeUtils::shapeAsString(gradO), 0, "AVGPOOL3D_BP op: wrong shape of output's gradients array (next epsilon), expected is %s, but got %s instead !", expectedGradOShape.c_str(), ShapeUtils::shapeAsString(gradO).c_str());
REQUIRE_TRUE(expectedGradIShape == ShapeUtils::shapeAsString(gradI), 0, "AVGPOOL3D_BP op: wrong shape of input's gradients array (epsilon), expected is %s, but got %s instead !", expectedGradIShape.c_str(), ShapeUtils::shapeAsString(gradI).c_str());
if(!isNCDHW) {
input = input->permute({0, 4, 1, 2, 3}); // [bS, iD, iH, iW, iC] -> [bS, iC, iD, iH, iW]
gradI = gradI->permute({0, 4, 1, 2, 3}); // [bS, iD, iH, iW, iC] -> [bS, iC, iD, iH, iW]
gradO = gradO->permute({0, 4, 1, 2, 3}); // [bS, oD, oH, oW, iC] -> [bS, iC, oD, oH, oW]
}
if(isSameMode) // SAME
ConvolutionUtils::calcPadding3D(pD, pH, pW, oD, oH, oW, iD, iH, iW, kD, kH, kW, sD, sH, sW, dD, dH, dW);
// 0,1 - kernel Height/Width; 2,3 - stride Height/Width; 4,5 - pad Height/Width; 6,7 - dilation Height/Width; 8 - poolingMode; 9 - divisor;
ConvolutionUtils::pooling3dBP(block, *input, *gradO, *gradI, kD, kH, kW, sD, sH, sW, pD, pH, pW, dD, dH, dW, 1, extraParam0);
if(!isNCDHW) {
delete input;
delete gradI;
delete gradO;
}
return Status::OK();
}
DECLARE_SHAPE_FN(avgpool3dnew_bp) {
return SHAPELIST(ConstantShapeHelper::getInstance()->createShapeInfo(ShapeDescriptor(inputShape->at(0), ArrayOptions::dataType(inputShape->at(1)))));
}
}
}
#endif