232 lines
6.4 KiB
C++
232 lines
6.4 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// Created by Yurii Shyrma on 18.12.2017
|
|
//
|
|
|
|
#include <householder.h>
|
|
#include <NDArrayFactory.h>
|
|
|
|
namespace nd4j {
|
|
namespace ops {
|
|
namespace helpers {
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template <typename T>
|
|
NDArray Householder<T>::evalHHmatrix(const NDArray& x) {
|
|
|
|
// input validation
|
|
if(!x.isVector() && !x.isScalar())
|
|
throw std::runtime_error("ops::helpers::Householder::evalHHmatrix method: input array must be vector or scalar!");
|
|
|
|
auto w = NDArrayFactory::create(x.ordering(), {(int)x.lengthOf(), 1}, x.dataType(), x.getContext()); // column-vector
|
|
auto wT = NDArrayFactory::create(x.ordering(), {1, (int)x.lengthOf()}, x.dataType(), x.getContext()); // row-vector (transposed w)
|
|
|
|
T coeff;
|
|
T normX = x.reduceNumber(reduce::Norm2).e<T>(0);
|
|
|
|
if(normX*normX - x.e<T>(0) * x.e<T>(0) <= DataTypeUtils::min<T>() || x.lengthOf() == 1) {
|
|
|
|
normX = x.e<T>(0);
|
|
coeff = 0.f;
|
|
w = 0.f;
|
|
|
|
}
|
|
else {
|
|
|
|
if(x.e<T>(0) >= (T)0.f)
|
|
normX = -normX; // choose opposite sign to lessen roundoff error
|
|
|
|
T u0 = x.e<T>(0) - normX;
|
|
coeff = -u0 / normX;
|
|
w.assign(x / u0);
|
|
}
|
|
|
|
w.p(Nd4jLong(0), 1.f);
|
|
wT.assign(&w);
|
|
|
|
auto identity = NDArrayFactory::create(x.ordering(), {(int)x.lengthOf(), (int)x.lengthOf()}, x.dataType(), x.getContext());
|
|
identity.setIdentity(); // identity matrix
|
|
|
|
return identity - mmul(w, wT) * coeff;
|
|
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template <typename T>
|
|
void Householder<T>::evalHHmatrixData(const NDArray& x, NDArray& tail, T& coeff, T& normX) {
|
|
|
|
// input validation
|
|
if(!x.isVector() && !x.isScalar())
|
|
throw std::runtime_error("ops::helpers::Householder::evalHHmatrixData method: input array must be vector or scalar!");
|
|
|
|
if(!x.isScalar() && x.lengthOf() != tail.lengthOf() + 1)
|
|
throw std::runtime_error("ops::helpers::Householder::evalHHmatrixData method: input tail vector must have length less than unity compared to input x vector!");
|
|
|
|
normX = x.reduceNumber(reduce::Norm2, nullptr).e<T>(0);
|
|
|
|
if(normX*normX - x.e<T>(0) * x.e<T>(0) <= DataTypeUtils::min<T>() || x.lengthOf() == 1) {
|
|
|
|
normX = x.e<T>(0);
|
|
coeff = (T)0.f;
|
|
tail = (T)0.f;
|
|
}
|
|
else {
|
|
|
|
if(x.e<T>(0) >= (T)0.f)
|
|
normX = -normX; // choose opposite sign to lessen roundoff error
|
|
|
|
T u0 = x.e<T>(0) - normX;
|
|
coeff = -u0 / normX;
|
|
|
|
if(x.isRowVector())
|
|
tail.assign(x({0,0, 1,-1}) / u0);
|
|
else
|
|
tail.assign(x({1,-1, 0,0,}) / u0);
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template <typename T>
|
|
void Householder<T>::evalHHmatrixDataI(const NDArray& x, T& coeff, T& normX) {
|
|
|
|
int rows = (int)x.lengthOf()-1;
|
|
int num = 1;
|
|
|
|
if(rows == 0) {
|
|
rows = 1;
|
|
num = 0;
|
|
}
|
|
|
|
auto tail = NDArrayFactory::create(x.ordering(), {rows, 1}, x.dataType(), x.getContext());
|
|
evalHHmatrixData(x, tail, coeff, normX);
|
|
|
|
if(x.isRowVector()) {
|
|
auto temp = x({0,0, num, x.sizeAt(1)}, true);
|
|
temp.assign(tail);
|
|
}
|
|
else {
|
|
auto temp = x({num,x.sizeAt(0), 0,0}, true);
|
|
temp.assign(tail);
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template <typename T>
|
|
void Householder<T>::mulLeft(NDArray& matrix, const NDArray& tail, const T coeff) {
|
|
|
|
// if(matrix.rankOf() != 2)
|
|
// throw "ops::helpers::Householder::mulLeft method: input array must be 2D matrix !";
|
|
|
|
if(matrix.sizeAt(0) == 1)
|
|
matrix *= (T)1.f - coeff;
|
|
|
|
else if(coeff != (T)0.f) {
|
|
|
|
auto bottomPart = new NDArray(matrix({1,matrix.sizeAt(0), 0,0}, true));
|
|
auto bottomPartCopy = *bottomPart;
|
|
|
|
if(tail.isColumnVector()) {
|
|
|
|
auto column = tail;
|
|
auto row = tail.transpose();
|
|
auto resultingRow = mmul(*row, bottomPartCopy);
|
|
auto fistRow = matrix({0,1, 0,0}, true);
|
|
resultingRow += fistRow;
|
|
fistRow -= resultingRow * coeff;
|
|
*bottomPart -= mmul(column, resultingRow) * coeff;
|
|
|
|
delete row;
|
|
}
|
|
else {
|
|
|
|
auto row = tail;
|
|
auto column = tail.transpose();
|
|
auto resultingRow = mmul(row, bottomPartCopy);
|
|
auto fistRow = matrix({0,1, 0,0}, true);
|
|
resultingRow += fistRow;
|
|
fistRow -= resultingRow * coeff;
|
|
*bottomPart -= mmul(*column, resultingRow) * coeff;
|
|
|
|
delete column;
|
|
}
|
|
delete bottomPart;
|
|
}
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template <typename T>
|
|
void Householder<T>::mulRight(NDArray& matrix, const NDArray& tail, const T coeff) {
|
|
|
|
// if(matrix.rankOf() != 2)
|
|
// throw "ops::helpers::Householder::mulRight method: input array must be 2D matrix !";
|
|
|
|
if(matrix.sizeAt(1) == 1)
|
|
matrix *= (T)1.f - coeff;
|
|
|
|
else if(coeff != (T)0.f) {
|
|
|
|
auto rightPart = new NDArray(matrix({0,0, 1,matrix.sizeAt(1)}, true));
|
|
auto rightPartCopy = *rightPart;
|
|
auto fistCol = new NDArray(matrix({0,0, 0,1}, true));
|
|
|
|
if(tail.isColumnVector()) {
|
|
|
|
auto column = tail;
|
|
auto row = tail.transpose();
|
|
auto resultingCol = mmul(rightPartCopy, column);
|
|
resultingCol += *fistCol;
|
|
*fistCol -= resultingCol * coeff;
|
|
*rightPart -= mmul(resultingCol, *row) * coeff;
|
|
|
|
delete row;
|
|
}
|
|
else {
|
|
|
|
auto row = tail;
|
|
auto column = tail.transpose();
|
|
auto resultingCol = mmul(rightPartCopy, *column);
|
|
resultingCol += *fistCol;
|
|
*fistCol -= resultingCol * coeff;
|
|
*rightPart -= mmul(resultingCol, row) * coeff;
|
|
|
|
delete column;
|
|
|
|
}
|
|
delete rightPart;
|
|
delete fistCol;
|
|
}
|
|
}
|
|
|
|
|
|
template class ND4J_EXPORT Householder<float>;
|
|
template class ND4J_EXPORT Householder<float16>;
|
|
template class ND4J_EXPORT Householder<bfloat16>;
|
|
template class ND4J_EXPORT Householder<double>;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
}
|
|
}
|