cavis/libnd4j/include/helpers/impl/MmulHelper.cpp

313 lines
14 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 05.06.2018
//
#ifndef LIBND4J_MMULHELPER_CPP
#define LIBND4J_MMULHELPER_CPP
#include "../MmulHelper.h"
#include <helpers/ShapeUtils.h>
#include <helpers/BlasHelper.h>
#include <array/NDArrayFactory.h>
namespace sd {
//////////////////////////////////////////////////////////////////////////
sd::NDArray* sd::MmulHelper::tensorDot(const sd::NDArray* A, const sd::NDArray* B, const std::initializer_list<int>& axesA, const std::initializer_list<int>& axesB) {
std::vector<int> aA(axesA);
std::vector<int> aB(axesB);
return tensorDot(A, B, aA, aB);
}
//////////////////////////////////////////////////////////////////////////
sd::NDArray* sd::MmulHelper::tensorDot(const sd::NDArray* a, const sd::NDArray* b, const std::vector<int>& axes_0, const std::vector<int>& axes_1) {
std::vector<int> permutAt, permutBt;
std::vector<Nd4jLong> shapeAt, shapeBt;
auto outShape = ShapeUtils::evalShapeForTensorDot(a, b, axes_0, axes_1, permutAt, permutBt, shapeAt, shapeBt);
// check whether permutation is necessary
const NDArray* aP = permutAt.empty() ? a : new NDArray(a->permute(permutAt));
const NDArray* bP = permutBt.empty() ? b : new NDArray(b->permute(permutBt));
// check whether reshape is necessary
const NDArray* aPR = aP->isSameShape(shapeAt) ? aP : new NDArray(aP->reshape(aP->ordering(), shapeAt));
const NDArray* bPR = bP->isSameShape(shapeAt) ? bP : new NDArray(bP->reshape(bP->ordering(), shapeBt));
NDArray* c = mmul(aPR, bPR, nullptr, 1.0, 0.0);
c->reshapei(outShape);
if(aP != aPR)
delete aPR;
if(bP != bPR)
delete bPR;
if(a != aP)
delete aP;
if(b != bP)
delete bP;
return c;
}
//////////////////////////////////////////////////////////////////////////
void sd::MmulHelper::tensorDot(const sd::NDArray* a, const sd::NDArray* b, sd::NDArray* c, const std::vector<int>& axes_a, const std::vector<int>& axes_b, const std::vector<int>& permutForC) {
std::vector<int> permutAt, permutBt;
std::vector<Nd4jLong> shapeAt, shapeBt;
ShapeUtils::evalShapeForTensorDot(a, b, axes_a, axes_b, permutAt, permutBt, shapeAt, shapeBt);
// check whether permutation is required
NDArray* cP = permutForC.empty() ? c : new NDArray(c->permute(permutForC));
// check whether permutation is necessary
const NDArray* aP = permutAt.empty() ? a : new NDArray(a->permute(permutAt));
const NDArray* bP = permutBt.empty() ? b : new NDArray(b->permute(permutBt));
// check whether reshape is necessary
const NDArray* aPR = aP->isSameShape(shapeAt) ? aP : new NDArray(aP->reshape(aP->ordering(), shapeAt));
const NDArray* bPR = bP->isSameShape(shapeAt) ? bP : new NDArray(bP->reshape(bP->ordering(), shapeBt));
std::vector<Nd4jLong> requiredCshape = {aPR->sizeAt(0), bPR->sizeAt(1)};
NDArray* cPR = cP->isSameShape(requiredCshape) ? cP : new NDArray(cP->reshape(cP->ordering(), requiredCshape, false));
mmul(aPR, bPR, cPR, 1.0, 0.0);
if(cPR->buffer() != cP->buffer() || cPR->specialBuffer() != cP->specialBuffer() ) // this means both permute and reshape have been performed on c, cP always points on c->buffer()
cP->assign(cPR);
if(aP != aPR)
delete aPR;
if(bP != bPR)
delete bPR;
if(a != aP)
delete aP;
if(b != bP)
delete bP;
if(cP != cPR)
delete cPR;
if(c != cP)
delete cP;
}
#ifndef __JAVACPP_HACK__
//////////////////////////////////////////////////////////////////////////
void sd::MmulHelper::tensorDot(const NDArray* a, const NDArray* b, NDArray* c, const std::vector<std::vector<Nd4jLong>>& modifA, const std::vector<std::vector<Nd4jLong>>& modifB, const std::vector<std::vector<Nd4jLong>>& modifC) {
NDArray *aPR(const_cast<NDArray*>(a)), *bPR(const_cast<NDArray*>(b));
std::string whatToDoWithA, whatToDoWithB, whatToDoWithC; // "" - nothing; "p" - permutation; "r" - reshaping; "pr" - permutation+reshaping; "rp" - reshaping/permutation, and so on; if another string is produced - throw exception
for(const auto& arr : modifA)
whatToDoWithA = (std::find(arr.begin(), arr.end(), 0) != arr.end()) ? whatToDoWithA + "p" : whatToDoWithA + "r"; // when 0 is present in arr then it is permutation array, otherwise - it is reshaping array
for(const auto& arr : modifB)
whatToDoWithB = (std::find(arr.begin(), arr.end(), 0) != arr.end()) ? whatToDoWithB + "p" : whatToDoWithB + "r";
for(const auto& arr : modifC)
whatToDoWithC = (std::find(arr.begin(), arr.end(), 0) != arr.end()) ? whatToDoWithC + "p" : whatToDoWithC + "r";
// first step for a array
if(!whatToDoWithA.empty())
aPR = (whatToDoWithA[0] == 'p') ? new NDArray(a->permute(modifA[0])) : new NDArray(a->reshape(a->ordering(), modifA[0]));
// first step for b array
if(!whatToDoWithB.empty())
bPR = (whatToDoWithB[0] == 'p') ? new NDArray(b->permute(modifB[0])) : new NDArray(b->reshape(b->ordering(), modifB[0]));
// rest steps for a array
for(int i = 1; i < whatToDoWithA.size(); ++i)
if(whatToDoWithA[i] == 'p') aPR->permutei(modifA[i]); else aPR->reshapei(modifA[i]);
// rest steps for b array
for(int i = 1; i < whatToDoWithB.size(); ++i)
if(whatToDoWithB[i] == 'p') bPR->permutei(modifB[i]); else bPR->reshapei(modifB[i]);
// now work with c array
std::vector<NDArray*> cArrs = {c};
if(!whatToDoWithC.empty()) {
cArrs = std::vector<NDArray*>(whatToDoWithC.size()+1, c);
for(int i = 0; i < cArrs.size()-1; ++i)
cArrs[i+1] = (whatToDoWithC[i] == 'p') ? new NDArray(cArrs[i]->permute(modifC[i])) : new NDArray(cArrs[i]->reshape(c->ordering(), modifC[i], false)); // since we ignore first element in cArrs (that is cArrs[0]) then it is always equal to c
}
mmul(aPR, bPR, cArrs[cArrs.size()-1], 1.0, 0.0);
// check whether new buffer allocation was happened for c array
if(!whatToDoWithC.empty()) {
for(int i = cArrs.size()-1; i > 0; --i) {
if(cArrs[i]->buffer() != cArrs[i-1]->buffer() || cArrs[i]->specialBuffer() != cArrs[i-1]->specialBuffer())
cArrs[i-1]->assign(cArrs[i]);
delete cArrs[i];
}
}
if(aPR != a)
delete aPR;
if(bPR != b)
delete bPR;
}
//////////////////////////////////////////////////////////////////////////
NDArray* sd::MmulHelper::tensorDot(const sd::NDArray* a, const sd::NDArray* b, const std::vector<std::vector<Nd4jLong>>& modifA, const std::vector<std::vector<Nd4jLong>>& modifB) {
NDArray *aPR(const_cast<NDArray*>(a)), *bPR(const_cast<NDArray*>(b));
std::string whatToDoWithA, whatToDoWithB; // "" - nothing; "p" - permutation only; "r" - reshaping only; "pr" - permutation+reshaping; "rp" - reshaping/permutation; another string - throw exception
for(const auto& arr : modifA)
whatToDoWithA = (std::find(arr.begin(), arr.end(), 0) != arr.end()) ? whatToDoWithA + "p" : whatToDoWithA + "r"; // when 0 is present in arr then it is permutation array, otherwise - it is reshaping array
for(const auto& arr : modifB)
whatToDoWithB = (std::find(arr.begin(), arr.end(), 0) != arr.end()) ? whatToDoWithB + "p" : whatToDoWithB + "r";
// first step for a array
if(!whatToDoWithA.empty())
aPR = (whatToDoWithA[0] == 'p') ? new NDArray(a->permute(modifA[0])) : new NDArray(a->reshape(a->ordering(), modifA[0]));
// first step for b array
if(!whatToDoWithB.empty())
bPR = (whatToDoWithB[0] == 'p') ? new NDArray(b->permute(modifB[0])) : new NDArray(b->reshape(b->ordering(), modifB[0]));
// rest steps for a array
for(int i = 1; i < whatToDoWithA.size(); ++i)
if(whatToDoWithA[i] == 'p') aPR->permutei(modifA[i]); else aPR->reshapei(modifA[i]);
// rest steps for b array
for(int i = 1; i < whatToDoWithB.size(); ++i)
if(whatToDoWithB[i] == 'p') bPR->permutei(modifB[i]); else bPR->reshapei(modifB[i]);
NDArray* result = mmul(aPR, bPR, nullptr, 1.0, 0.0);
if(aPR != a)
delete aPR;
if(bPR != b)
delete bPR;
return result;
}
#endif
//////////////////////////////////////////////////////////////////////////
sd::NDArray* MmulHelper::mmul(const sd::NDArray* A, const sd::NDArray* B, sd::NDArray* C , const double alpha, const double beta, const char outOrder) {
int lenDim;
const int aRank = A->rankOf();
const int bRank = B->rankOf();
const bool isAVector = shape::isCommonVector(A->shapeInfo(), lenDim);
const bool isBVector = shape::isCommonVector(B->shapeInfo(), lenDim);
// dot product of 2 vectors
if(isAVector && isBVector && (aRank != 2 || aRank == 2 && (A->isSameShape(B) || bRank == 1 && A->sizeAt(1) == 1))) // (1x1x1 * 1x1) or (1x4 * 1*4) or (4x1 * 4x1) or (4x1 * 4)
return dot(A, B, C, alpha, beta);
// matrix x matrix
if(aRank == 2 && bRank == 2)
return mmulMxM(A, B, C, alpha, beta, outOrder);
// matrix x vector
if(aRank == 2 && isBVector)
return mmulMxV(A, B, C, alpha, beta, outOrder);
// vector x matrix, A{M} x B{M,N} = C{N} -> reduce to matrix x matrix A2{1,M} x B{M,N} = C2{1,N}, since there is no corresponding blas operation sgevm
if(isAVector && bRank == 2) {
NDArray* A2 = new NDArray(A->reshape(A->ordering(), {1, A->lengthOf()})); // A{M} -> A2{1,M}
NDArray* C2 = C ? new NDArray(C->reshape(C->ordering(), {1, C->lengthOf()}, false)) : nullptr; // C{N} -> C2{1,N}
auto result = mmulMxM(A2, B, C2, alpha, beta, outOrder); // result{1,N}
delete A2;
delete C2;
if(!C) {
result->reshapei({result->lengthOf()}); // result{1,N} -> result{N}
return result;
}
return C;
}
// batched matrix multiplication
return mmulNxN(A, B, C, alpha, beta, outOrder);
}
//////////////////////////////////////////////////////////////////////////
void MmulHelper::matmul(const sd::NDArray* x, const sd::NDArray* y, sd::NDArray* z, const bool transX, const bool transY, double alpha, double beta) {
int xRank = x->rankOf();
int yRank = y->rankOf();
auto outShape = ShapeUtils::evalShapeForMatmul(x->shapeInfo(), y->shapeInfo(), transX, transY);
if(!z->isSameShape(outShape)) {
nd4j_printf("NDArrayFactory::matmul static method: input shape of output array is wrong, actual is %s and expected is %s ! \n", ShapeUtils::shapeAsString(z).c_str(), ShapeUtils::shapeAsString(outShape).c_str());
throw std::invalid_argument("");
}
if (z->isEmpty())
return;
NDArray* xT(const_cast<NDArray*>(x)), *yT(const_cast<NDArray*>(y)), *zT(z);
if((transX && xRank > 1) || (transY && yRank > 1)) {
const int rank = xRank >= yRank ? xRank : yRank;
std::vector<int> permut(rank);
for (int i = 0; i < rank-2; ++i)
permut[i] = i;
permut[rank-2] = rank - 1;
permut[rank-1] = rank - 2;
if(transX)
xT = new NDArray(x->permute(permut));
if(transY)
yT = new NDArray(y->permute(permut));
}
if(xRank <= 2 && yRank <= 2) { // dot (1Dx1D), vector-matrix (1Dx2D), matrix-vector (2Dx1D), matrix-matrix (2Dx2D) product cases
if(xRank == 1 && yRank == 2) { // reduce vector-matrix to matrix-matrix case
xT = new NDArray(x->reshape(x->ordering(), {1, x->lengthOf()})); // please note x is not transposed in this case (since xRank=1)
zT = new NDArray(z->reshape(z->ordering(), {1, z->lengthOf()}));
}
mmul(xT, yT, zT, alpha, beta);
}
else { // rest cases - batched mmul
const int batchRank = xRank - 2;
std::vector<int> dimsToExclude(batchRank);
for(int i = 0; i < batchRank; ++i)
dimsToExclude[i] = i;
const Nd4jLong numOfSubArrs = ShapeUtils::getNumOfSubArrs(xT->shapeInfo(), dimsToExclude);
//PRAGMA_OMP_PARALLEL_FOR
for(Nd4jLong i = 0; i < numOfSubArrs; ++i) {
auto xSubArr = (*xT)(i, dimsToExclude);
auto ySubArr = (*yT)(i, dimsToExclude);
auto zSubArr = (*zT)(i, dimsToExclude);
mmul(&xSubArr, &ySubArr, &zSubArr, alpha, beta);
}
}
if(xT != x)
delete xT;
if(yT != y)
delete yT;
if(zT != z)
delete zT;
}
//BUILD_TRIPLE_TEMPLATE(template void usualGemm, (const char cOrder, const bool transA, const bool transB, const int M, const int N, const int K, const double alpha, const void* A, const int lda, const void* B, const int ldb, const double beta, void* C, const int ldc), LIBND4J_TYPES, FLOAT_TYPES, FLOAT_TYPES);
//BUILD_TRIPLE_TEMPLATE(template void usualGemv, (const char aOrder, const int M, const int N, const double alpha, const void* A, const int lda, const void* B, const int incx, const double beta, void* C, const int incy), LIBND4J_TYPES, FLOAT_TYPES, FLOAT_TYPES);
//BUILD_TRIPLE_TEMPLATE(template void usualDot, (const Nd4jLong length, const double alpha, const void* vX, const Nd4jLong incx, const void* vY, const Nd4jLong incy, const double beta, void* vZ), LIBND4J_TYPES, FLOAT_TYPES, FLOAT_TYPES);
}
#endif