313 lines
14 KiB
C++
313 lines
14 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Yurii Shyrma (iuriish@yahoo.com), created on 05.06.2018
|
|
//
|
|
|
|
#ifndef LIBND4J_MMULHELPER_CPP
|
|
#define LIBND4J_MMULHELPER_CPP
|
|
|
|
#include "../MmulHelper.h"
|
|
#include <helpers/ShapeUtils.h>
|
|
#include <helpers/BlasHelper.h>
|
|
#include <array/NDArrayFactory.h>
|
|
|
|
namespace sd {
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
sd::NDArray* sd::MmulHelper::tensorDot(const sd::NDArray* A, const sd::NDArray* B, const std::initializer_list<int>& axesA, const std::initializer_list<int>& axesB) {
|
|
std::vector<int> aA(axesA);
|
|
std::vector<int> aB(axesB);
|
|
return tensorDot(A, B, aA, aB);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
sd::NDArray* sd::MmulHelper::tensorDot(const sd::NDArray* a, const sd::NDArray* b, const std::vector<int>& axes_0, const std::vector<int>& axes_1) {
|
|
|
|
std::vector<int> permutAt, permutBt;
|
|
std::vector<Nd4jLong> shapeAt, shapeBt;
|
|
|
|
auto outShape = ShapeUtils::evalShapeForTensorDot(a, b, axes_0, axes_1, permutAt, permutBt, shapeAt, shapeBt);
|
|
|
|
// check whether permutation is necessary
|
|
const NDArray* aP = permutAt.empty() ? a : new NDArray(a->permute(permutAt));
|
|
const NDArray* bP = permutBt.empty() ? b : new NDArray(b->permute(permutBt));
|
|
|
|
// check whether reshape is necessary
|
|
const NDArray* aPR = aP->isSameShape(shapeAt) ? aP : new NDArray(aP->reshape(aP->ordering(), shapeAt));
|
|
const NDArray* bPR = bP->isSameShape(shapeAt) ? bP : new NDArray(bP->reshape(bP->ordering(), shapeBt));
|
|
|
|
NDArray* c = mmul(aPR, bPR, nullptr, 1.0, 0.0);
|
|
|
|
c->reshapei(outShape);
|
|
|
|
if(aP != aPR)
|
|
delete aPR;
|
|
if(bP != bPR)
|
|
delete bPR;
|
|
if(a != aP)
|
|
delete aP;
|
|
if(b != bP)
|
|
delete bP;
|
|
|
|
return c;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
void sd::MmulHelper::tensorDot(const sd::NDArray* a, const sd::NDArray* b, sd::NDArray* c, const std::vector<int>& axes_a, const std::vector<int>& axes_b, const std::vector<int>& permutForC) {
|
|
|
|
std::vector<int> permutAt, permutBt;
|
|
std::vector<Nd4jLong> shapeAt, shapeBt;
|
|
ShapeUtils::evalShapeForTensorDot(a, b, axes_a, axes_b, permutAt, permutBt, shapeAt, shapeBt);
|
|
|
|
// check whether permutation is required
|
|
NDArray* cP = permutForC.empty() ? c : new NDArray(c->permute(permutForC));
|
|
|
|
// check whether permutation is necessary
|
|
const NDArray* aP = permutAt.empty() ? a : new NDArray(a->permute(permutAt));
|
|
const NDArray* bP = permutBt.empty() ? b : new NDArray(b->permute(permutBt));
|
|
|
|
// check whether reshape is necessary
|
|
const NDArray* aPR = aP->isSameShape(shapeAt) ? aP : new NDArray(aP->reshape(aP->ordering(), shapeAt));
|
|
const NDArray* bPR = bP->isSameShape(shapeAt) ? bP : new NDArray(bP->reshape(bP->ordering(), shapeBt));
|
|
|
|
std::vector<Nd4jLong> requiredCshape = {aPR->sizeAt(0), bPR->sizeAt(1)};
|
|
|
|
NDArray* cPR = cP->isSameShape(requiredCshape) ? cP : new NDArray(cP->reshape(cP->ordering(), requiredCshape, false));
|
|
|
|
mmul(aPR, bPR, cPR, 1.0, 0.0);
|
|
|
|
if(cPR->buffer() != cP->buffer() || cPR->specialBuffer() != cP->specialBuffer() ) // this means both permute and reshape have been performed on c, cP always points on c->buffer()
|
|
cP->assign(cPR);
|
|
|
|
if(aP != aPR)
|
|
delete aPR;
|
|
if(bP != bPR)
|
|
delete bPR;
|
|
if(a != aP)
|
|
delete aP;
|
|
if(b != bP)
|
|
delete bP;
|
|
|
|
if(cP != cPR)
|
|
delete cPR;
|
|
if(c != cP)
|
|
delete cP;
|
|
}
|
|
|
|
|
|
#ifndef __JAVACPP_HACK__
|
|
//////////////////////////////////////////////////////////////////////////
|
|
void sd::MmulHelper::tensorDot(const NDArray* a, const NDArray* b, NDArray* c, const std::vector<std::vector<Nd4jLong>>& modifA, const std::vector<std::vector<Nd4jLong>>& modifB, const std::vector<std::vector<Nd4jLong>>& modifC) {
|
|
|
|
NDArray *aPR(const_cast<NDArray*>(a)), *bPR(const_cast<NDArray*>(b));
|
|
std::string whatToDoWithA, whatToDoWithB, whatToDoWithC; // "" - nothing; "p" - permutation; "r" - reshaping; "pr" - permutation+reshaping; "rp" - reshaping/permutation, and so on; if another string is produced - throw exception
|
|
|
|
for(const auto& arr : modifA)
|
|
whatToDoWithA = (std::find(arr.begin(), arr.end(), 0) != arr.end()) ? whatToDoWithA + "p" : whatToDoWithA + "r"; // when 0 is present in arr then it is permutation array, otherwise - it is reshaping array
|
|
for(const auto& arr : modifB)
|
|
whatToDoWithB = (std::find(arr.begin(), arr.end(), 0) != arr.end()) ? whatToDoWithB + "p" : whatToDoWithB + "r";
|
|
for(const auto& arr : modifC)
|
|
whatToDoWithC = (std::find(arr.begin(), arr.end(), 0) != arr.end()) ? whatToDoWithC + "p" : whatToDoWithC + "r";
|
|
|
|
// first step for a array
|
|
if(!whatToDoWithA.empty())
|
|
aPR = (whatToDoWithA[0] == 'p') ? new NDArray(a->permute(modifA[0])) : new NDArray(a->reshape(a->ordering(), modifA[0]));
|
|
// first step for b array
|
|
if(!whatToDoWithB.empty())
|
|
bPR = (whatToDoWithB[0] == 'p') ? new NDArray(b->permute(modifB[0])) : new NDArray(b->reshape(b->ordering(), modifB[0]));
|
|
// rest steps for a array
|
|
for(int i = 1; i < whatToDoWithA.size(); ++i)
|
|
if(whatToDoWithA[i] == 'p') aPR->permutei(modifA[i]); else aPR->reshapei(modifA[i]);
|
|
// rest steps for b array
|
|
for(int i = 1; i < whatToDoWithB.size(); ++i)
|
|
if(whatToDoWithB[i] == 'p') bPR->permutei(modifB[i]); else bPR->reshapei(modifB[i]);
|
|
|
|
// now work with c array
|
|
std::vector<NDArray*> cArrs = {c};
|
|
if(!whatToDoWithC.empty()) {
|
|
cArrs = std::vector<NDArray*>(whatToDoWithC.size()+1, c);
|
|
for(int i = 0; i < cArrs.size()-1; ++i)
|
|
cArrs[i+1] = (whatToDoWithC[i] == 'p') ? new NDArray(cArrs[i]->permute(modifC[i])) : new NDArray(cArrs[i]->reshape(c->ordering(), modifC[i], false)); // since we ignore first element in cArrs (that is cArrs[0]) then it is always equal to c
|
|
}
|
|
|
|
mmul(aPR, bPR, cArrs[cArrs.size()-1], 1.0, 0.0);
|
|
|
|
// check whether new buffer allocation was happened for c array
|
|
if(!whatToDoWithC.empty()) {
|
|
for(int i = cArrs.size()-1; i > 0; --i) {
|
|
if(cArrs[i]->buffer() != cArrs[i-1]->buffer() || cArrs[i]->specialBuffer() != cArrs[i-1]->specialBuffer())
|
|
cArrs[i-1]->assign(cArrs[i]);
|
|
delete cArrs[i];
|
|
}
|
|
}
|
|
|
|
if(aPR != a)
|
|
delete aPR;
|
|
if(bPR != b)
|
|
delete bPR;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
NDArray* sd::MmulHelper::tensorDot(const sd::NDArray* a, const sd::NDArray* b, const std::vector<std::vector<Nd4jLong>>& modifA, const std::vector<std::vector<Nd4jLong>>& modifB) {
|
|
|
|
NDArray *aPR(const_cast<NDArray*>(a)), *bPR(const_cast<NDArray*>(b));
|
|
std::string whatToDoWithA, whatToDoWithB; // "" - nothing; "p" - permutation only; "r" - reshaping only; "pr" - permutation+reshaping; "rp" - reshaping/permutation; another string - throw exception
|
|
|
|
for(const auto& arr : modifA)
|
|
whatToDoWithA = (std::find(arr.begin(), arr.end(), 0) != arr.end()) ? whatToDoWithA + "p" : whatToDoWithA + "r"; // when 0 is present in arr then it is permutation array, otherwise - it is reshaping array
|
|
for(const auto& arr : modifB)
|
|
whatToDoWithB = (std::find(arr.begin(), arr.end(), 0) != arr.end()) ? whatToDoWithB + "p" : whatToDoWithB + "r";
|
|
|
|
// first step for a array
|
|
if(!whatToDoWithA.empty())
|
|
aPR = (whatToDoWithA[0] == 'p') ? new NDArray(a->permute(modifA[0])) : new NDArray(a->reshape(a->ordering(), modifA[0]));
|
|
// first step for b array
|
|
if(!whatToDoWithB.empty())
|
|
bPR = (whatToDoWithB[0] == 'p') ? new NDArray(b->permute(modifB[0])) : new NDArray(b->reshape(b->ordering(), modifB[0]));
|
|
// rest steps for a array
|
|
for(int i = 1; i < whatToDoWithA.size(); ++i)
|
|
if(whatToDoWithA[i] == 'p') aPR->permutei(modifA[i]); else aPR->reshapei(modifA[i]);
|
|
// rest steps for b array
|
|
for(int i = 1; i < whatToDoWithB.size(); ++i)
|
|
if(whatToDoWithB[i] == 'p') bPR->permutei(modifB[i]); else bPR->reshapei(modifB[i]);
|
|
|
|
NDArray* result = mmul(aPR, bPR, nullptr, 1.0, 0.0);
|
|
|
|
if(aPR != a)
|
|
delete aPR;
|
|
if(bPR != b)
|
|
delete bPR;
|
|
return result;
|
|
}
|
|
#endif
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
sd::NDArray* MmulHelper::mmul(const sd::NDArray* A, const sd::NDArray* B, sd::NDArray* C , const double alpha, const double beta, const char outOrder) {
|
|
|
|
int lenDim;
|
|
const int aRank = A->rankOf();
|
|
const int bRank = B->rankOf();
|
|
const bool isAVector = shape::isCommonVector(A->shapeInfo(), lenDim);
|
|
const bool isBVector = shape::isCommonVector(B->shapeInfo(), lenDim);
|
|
|
|
// dot product of 2 vectors
|
|
if(isAVector && isBVector && (aRank != 2 || aRank == 2 && (A->isSameShape(B) || bRank == 1 && A->sizeAt(1) == 1))) // (1x1x1 * 1x1) or (1x4 * 1*4) or (4x1 * 4x1) or (4x1 * 4)
|
|
return dot(A, B, C, alpha, beta);
|
|
|
|
// matrix x matrix
|
|
if(aRank == 2 && bRank == 2)
|
|
return mmulMxM(A, B, C, alpha, beta, outOrder);
|
|
|
|
// matrix x vector
|
|
if(aRank == 2 && isBVector)
|
|
return mmulMxV(A, B, C, alpha, beta, outOrder);
|
|
|
|
// vector x matrix, A{M} x B{M,N} = C{N} -> reduce to matrix x matrix A2{1,M} x B{M,N} = C2{1,N}, since there is no corresponding blas operation sgevm
|
|
if(isAVector && bRank == 2) {
|
|
NDArray* A2 = new NDArray(A->reshape(A->ordering(), {1, A->lengthOf()})); // A{M} -> A2{1,M}
|
|
NDArray* C2 = C ? new NDArray(C->reshape(C->ordering(), {1, C->lengthOf()}, false)) : nullptr; // C{N} -> C2{1,N}
|
|
auto result = mmulMxM(A2, B, C2, alpha, beta, outOrder); // result{1,N}
|
|
delete A2;
|
|
delete C2;
|
|
|
|
if(!C) {
|
|
result->reshapei({result->lengthOf()}); // result{1,N} -> result{N}
|
|
return result;
|
|
}
|
|
return C;
|
|
}
|
|
|
|
// batched matrix multiplication
|
|
return mmulNxN(A, B, C, alpha, beta, outOrder);
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
void MmulHelper::matmul(const sd::NDArray* x, const sd::NDArray* y, sd::NDArray* z, const bool transX, const bool transY, double alpha, double beta) {
|
|
int xRank = x->rankOf();
|
|
int yRank = y->rankOf();
|
|
|
|
auto outShape = ShapeUtils::evalShapeForMatmul(x->shapeInfo(), y->shapeInfo(), transX, transY);
|
|
if(!z->isSameShape(outShape)) {
|
|
nd4j_printf("NDArrayFactory::matmul static method: input shape of output array is wrong, actual is %s and expected is %s ! \n", ShapeUtils::shapeAsString(z).c_str(), ShapeUtils::shapeAsString(outShape).c_str());
|
|
throw std::invalid_argument("");
|
|
}
|
|
|
|
if (z->isEmpty())
|
|
return;
|
|
|
|
NDArray* xT(const_cast<NDArray*>(x)), *yT(const_cast<NDArray*>(y)), *zT(z);
|
|
|
|
if((transX && xRank > 1) || (transY && yRank > 1)) {
|
|
const int rank = xRank >= yRank ? xRank : yRank;
|
|
std::vector<int> permut(rank);
|
|
for (int i = 0; i < rank-2; ++i)
|
|
permut[i] = i;
|
|
permut[rank-2] = rank - 1;
|
|
permut[rank-1] = rank - 2;
|
|
|
|
if(transX)
|
|
xT = new NDArray(x->permute(permut));
|
|
|
|
if(transY)
|
|
yT = new NDArray(y->permute(permut));
|
|
}
|
|
|
|
if(xRank <= 2 && yRank <= 2) { // dot (1Dx1D), vector-matrix (1Dx2D), matrix-vector (2Dx1D), matrix-matrix (2Dx2D) product cases
|
|
|
|
if(xRank == 1 && yRank == 2) { // reduce vector-matrix to matrix-matrix case
|
|
xT = new NDArray(x->reshape(x->ordering(), {1, x->lengthOf()})); // please note x is not transposed in this case (since xRank=1)
|
|
zT = new NDArray(z->reshape(z->ordering(), {1, z->lengthOf()}));
|
|
}
|
|
|
|
mmul(xT, yT, zT, alpha, beta);
|
|
}
|
|
else { // rest cases - batched mmul
|
|
|
|
const int batchRank = xRank - 2;
|
|
std::vector<int> dimsToExclude(batchRank);
|
|
for(int i = 0; i < batchRank; ++i)
|
|
dimsToExclude[i] = i;
|
|
|
|
const Nd4jLong numOfSubArrs = ShapeUtils::getNumOfSubArrs(xT->shapeInfo(), dimsToExclude);
|
|
|
|
//PRAGMA_OMP_PARALLEL_FOR
|
|
for(Nd4jLong i = 0; i < numOfSubArrs; ++i) {
|
|
auto xSubArr = (*xT)(i, dimsToExclude);
|
|
auto ySubArr = (*yT)(i, dimsToExclude);
|
|
auto zSubArr = (*zT)(i, dimsToExclude);
|
|
mmul(&xSubArr, &ySubArr, &zSubArr, alpha, beta);
|
|
}
|
|
}
|
|
|
|
if(xT != x)
|
|
delete xT;
|
|
if(yT != y)
|
|
delete yT;
|
|
if(zT != z)
|
|
delete zT;
|
|
}
|
|
|
|
//BUILD_TRIPLE_TEMPLATE(template void usualGemm, (const char cOrder, const bool transA, const bool transB, const int M, const int N, const int K, const double alpha, const void* A, const int lda, const void* B, const int ldb, const double beta, void* C, const int ldc), LIBND4J_TYPES, FLOAT_TYPES, FLOAT_TYPES);
|
|
//BUILD_TRIPLE_TEMPLATE(template void usualGemv, (const char aOrder, const int M, const int N, const double alpha, const void* A, const int lda, const void* B, const int incx, const double beta, void* C, const int incy), LIBND4J_TYPES, FLOAT_TYPES, FLOAT_TYPES);
|
|
//BUILD_TRIPLE_TEMPLATE(template void usualDot, (const Nd4jLong length, const double alpha, const void* vX, const Nd4jLong incx, const void* vY, const Nd4jLong incy, const double beta, void* vZ), LIBND4J_TYPES, FLOAT_TYPES, FLOAT_TYPES);
|
|
|
|
}
|
|
|
|
#endif |