* Shugeo strided slice zeros (#14) * Modified strided_slice op to properly work with empty-like shapes. * Fixed test for reduce_mean with empty-like input. * [WIP] Last merge (#15) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks * [WIP] Fixing outstanding issues for NLP (#9) * Avoid using not-inited objects * Test fixed. * Redundant method avoided for models like FastText * KMeans++ implementation * KMeans++ implementation * Disable parallel execution * KMeans++ * Tests * Dev branch merge (#16) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Fix some issues on master (#17) * Fix DataVec test issue * Fix issue with dl4j SameDiff output layer * Dtype fix for lambda layers * #7912 BertIterator dtype fix (use float32 not global default) * [WIP] Next set of CUDA stuff (#7) New CUDA implementations and improvements * bad file * Dev branch master merge (#23) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Compatibility of deserialization (#18) Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * SameDiff: add activation gradient checking support for debugging (#19) * SameDiff gradient checker: first pass on activation gradient checks * Fixes + tests for activation gradient checking * Javadoc * [WIP] Some nd4j data type corrections (#20) * Adjust data type * Set correct Data type. * Size of proper data type. * fix averaged cpu load (#22) * SameDiff ops, TF import and fixes (#24) * CheckNumerics tests + fixes + misc fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fake quant Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * FakeQuantWithMinMaxArgs Signed-off-by: AlexDBlack <blacka101@gmail.com> * CheckNumerics fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Small fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Javadoc Signed-off-by: AlexDBlack <blacka101@gmail.com> * Exception tweak Signed-off-by: AlexDBlack <blacka101@gmail.com> * fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix for out of scope stack allocated var use Signed-off-by: AlexDBlack <blacka101@gmail.com> * Ignores Signed-off-by: AlexDBlack <blacka101@gmail.com> * Ignore for known failing test (already logged issue) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Merge upstream to fork (#25) * Add thousand-separator commas to TotalParams (#7915) * Add thousand-separator commas to TotalParams The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them. * Add thousand-separator commas to MultiLayerNetwork Corresponding change to MultiLayerNetwork Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com> * Update contributing and issue/PR templates (#7934) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix link to AdaDelta paper (#7942) Fix link to AdaDelta paper hosted on matthewzeiler.com Signed-off-by: Jxtps * Fixes, and ignores for known/logged failing issues (#7943) Signed-off-by: AlexDBlack <blacka101@gmail.com> * SameDiff + DL4J/SameDiff: Multiple fixes (#28) * #7919 HDF5 attribute buffer length fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7909 Arbiter constructor exception ux improvements Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7925 RNN output layer length checks Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7939 Add listener for validating inputs are not incorrectly modified Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7939 Integrate NonInplaceValidationListener into tests * #7844 DL4J SameDiff fixes for variable minibatch size * DL4J SameDiff fixes - ensure gradient for input placeholder is available Signed-off-by: AlexDBlack <blacka101@gmail.com> * Tweaks to ExternalErrorsFunction - use placeholders, make more robust * Another fix * More fixes * More SameDiff/DL4J fixes * Scope out scalar array creation in BaseScalarOp * Remove debug code Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] Final dev branch merge (#29) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Compatibility of deserialization (#18) Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * SameDiff: add activation gradient checking support for debugging (#19) * SameDiff gradient checker: first pass on activation gradient checks * Fixes + tests for activation gradient checking * Javadoc * [WIP] Some nd4j data type corrections (#20) * Adjust data type * Set correct Data type. * Size of proper data type. * fix averaged cpu load (#22) * [WIP] Multiple dataset iterators (#27) * Splitting dataset into arbitrary number * Fixes * Multiple split of iterator * Test * Test * Some fixes * signature change * one more tweak Signed-off-by: raver119 <raver119@gmail.com> * one more test for sequential use of DataSetIteratorSplitter Signed-off-by: raver119 <raver119@gmail.com> * Fixes * Fixes * one more test for Alexander Signed-off-by: raver119 <raver119@gmail.com> * Some fixes * Some fixes * one more test for Alexander Signed-off-by: raver119 <raver119@gmail.com> * minor test fix Signed-off-by: raver119 <raver119@gmail.com> * Some fixes * Some fixes * couple of assertions tweaked Signed-off-by: raver119 <raver119@gmail.com> * MDS splitter test :/ Signed-off-by: raver119 <raver119@gmail.com> * Minor refactoring * Multi dataset * Some fixes * More tests * Small number of test fixes/improvements (failures on CI) (#31) Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] More CUDA stuff (#26) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * LRN BP CUDA Signed-off-by: raver119 <raver119@gmail.com> * less memory Signed-off-by: raver119 <raver119@gmail.com> * Fixed bug with crop_and_resize op helper. * get rid of unnecessary index-calculation dunction Signed-off-by: Yurii <yurii@skymind.io> * Fixed sort with nth_element cuda-based helper. * Refactored nth_element. * Refactored nth_element op and tests. * Modified usage of dim array with sortTad routine. * Refactored main routine of helper for non_max_image_suppression op. * non_max_image_suppression op helper with cuda kernel implementation. Initial revision. * fix vol2col cuda kernel * meh Signed-off-by: raver119 <raver119@gmail.com> * topK concept Signed-off-by: raver119 <raver119@gmail.com> * unsorted topK with scanWitdh of 1 Signed-off-by: raver119 <raver119@gmail.com> * correct vol2col tests * sorted/unsorted topK Signed-off-by: raver119 <raver119@gmail.com> * implementation and fixing col2im/col2vol * Corrected usage flags with input/output with reverse op. * dup is const now Signed-off-by: raver119 <raver119@gmail.com> * percentile op Signed-off-by: raver119 <raver119@gmail.com> * group tests for mapool2d Signed-off-by: Yurii <yurii@skymind.io> * special test for george Signed-off-by: raver119 <raver119@gmail.com> * less threads for sortTad Signed-off-by: raver119 <raver119@gmail.com> * provide conv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * remove auther in sort tad kernel code Signed-off-by: Yurii <yurii@skymind.io> * provide depthwise_conv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * - max_pooling_with_argmax - null check for special use Signed-off-by: raver119 <raver119@gmail.com> * dts cuda Signed-off-by: raver119 <raver119@gmail.com> * provide sconv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * std cuda Signed-off-by: raver119 <raver119@gmail.com> * Refactored non_max_suppression op to conform TF implementation. * Improved suppression helper. * provide pooling3d for cuda Signed-off-by: Yurii <yurii@skymind.io> * minor lstm rearrangements Signed-off-by: raver119 <raver119@gmail.com> * more of minor lstm rearrangements Signed-off-by: raver119 <raver119@gmail.com> * (bi)dynamic_rnn Signed-off-by: raver119 <raver119@gmail.com> * templates init order Signed-off-by: raver119 <raver119@gmail.com> * Refactored non_max_suppression op. * Added cuda kernel for non_max_suppression. * CPU sort by key/value Signed-off-by: raver119 <raver119@gmail.com> * CPU sort TAD by key/value Signed-off-by: raver119 <raver119@gmail.com> * CPU sort TAD by key/value tests Signed-off-by: raver119 <raver119@gmail.com> * Eliminate compiler error with cuda implementation. * - repaired gradCheck in cuda - provide conv2d_bp for cuda Signed-off-by: Yurii <yurii@skymind.io> * missed signature Signed-off-by: raver119 <raver119@gmail.com> * provide depthwise_conv2d_bp for cuda Signed-off-by: Yurii <yurii@skymind.io> * Implementation of lup helper with cuda kernel. Initial commit. * further work on backprops for convolutions Signed-off-by: Yurii <yurii@skymind.io> * CUDA linear sort by key/val Signed-off-by: raver119 <raver119@gmail.com> * CUDA tad sort by key/val Signed-off-by: raver119 <raver119@gmail.com> * start providing of backprop for pooling2d/3d Signed-off-by: Yurii <yurii@skymind.io> * Added atomicAdd for bool datatype. * dynamic partition concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic partition concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic partition scalar CUDA Signed-off-by: raver119 <raver119@gmail.com> * important comment Signed-off-by: raver119 <raver119@gmail.com> * fix pooling2d/3d backprop helpers Signed-off-by: Yurii <yurii@skymind.io> * Added non-linear test with dynamic_partition. * Improved test for dynamic_partition. * dynamic_partition TAD concept Signed-off-by: raver119 <raver119@gmail.com> * - dynamic_partition TAD CUDA impl - dynamic_partition TAD CPU fix Signed-off-by: raver119 <raver119@gmail.com> * - rewrite cpu code for usampling2d/3d - write cuda code for usampling2d/3d Signed-off-by: Yurii <yurii@skymind.io> * dynamic_stitch CUDA vector case Signed-off-by: raver119 <raver119@gmail.com> * dynamic_stitch CUDA TAD case concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic_stitch CUDA TAD case impl Signed-off-by: raver119 <raver119@gmail.com> * Added tests for dynamic_stitch 3D-4D cases. * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * Fixed type check for dynamic stitch. * min/max bp Signed-off-by: raver119 <raver119@gmail.com> * rewrite code for upsampling2d/3d cpu Signed-off-by: Yurii <yurii@skymind.io> * reduce min/max/norm_max bp Signed-off-by: raver119 <raver119@gmail.com> * lup implementation. Additional enhancements. * provide code for upsamling2d/3d backprop Signed-off-by: Yurii <yurii@skymind.io> * weightedCrossEntropyWithLogits Signed-off-by: raver119 <raver119@gmail.com> * Fixed template math atomicMul for 64bit ints. * Refactored dynamic_partition_bp op. * inverseBroadcast fix Signed-off-by: raver119 <raver119@gmail.com> * DynamicPartitionBP test datatype fixed. * - nd4j_atomicMul Windows fix - cpu/NDArrayLambda.hpp excluded from CUDA Signed-off-by: raver119 <raver119@gmail.com>
210 lines
10 KiB
Plaintext
210 lines
10 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Yurii Shyrma, created on 14.02.2018
|
|
//
|
|
|
|
// implementation of operation for LSTM cell with peep hole connections:
|
|
// http://www.bioinf.jku.at/publications/older/2604.pdf
|
|
// S. Hochreiter and J. Schmidhuber. "Long Short-Term Memory". Neural Computation, 9(8):1735-1780, 1997.
|
|
// and
|
|
// https://research.google.com/pubs/archive/43905.pdf
|
|
// Hasim Sak, Andrew Senior, and Francoise Beaufays. "Long short-term memory recurrent neural network architectures for large scale acoustic modeling." INTERSPEECH, 2014.
|
|
|
|
|
|
#include<ops/declarable/helpers/lstm.h>
|
|
#include<ops/declarable/helpers/lstmBlock.h>
|
|
#include <ops/declarable/CustomOperations.h>
|
|
#include<ops/declarable/helpers/transforms.h>
|
|
#include <array/NDArrayList.h>
|
|
#include <iterator>
|
|
|
|
namespace nd4j {
|
|
namespace ops {
|
|
namespace helpers {
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
void lstmCell(nd4j::LaunchContext * context, const NDArray* xt, const NDArray* ht_1, const NDArray* ct_1, const NDArray* Wx, const NDArray* Wh, const NDArray* Wc, const NDArray* Wp, const NDArray* b,
|
|
NDArray* ht, NDArray* ct, const std::vector<double>& params) {
|
|
|
|
// xt input [bS x inSize]
|
|
// ht_1 previous cell output [bS x numProj], that is at previous time step t-1, in case of projection=false -> numProj=numUnits!!!
|
|
// ct_1 previous cell state [bS x numUnits], that is at previous time step t-1
|
|
|
|
// Wx input-to-hidden weights, [inSize x 4*numUnits]
|
|
// Wh hidden-to-hidden weights, [numProj x 4*numUnits]
|
|
// Wc diagonal weights for peephole connections [3*numUnits]
|
|
// Wp projection weights [numUnits x numProj]
|
|
// b biases, [4*numUnits]
|
|
|
|
// ht current cell output [bS x numProj], that is at current time step t
|
|
// ct current cell state [bS x numUnits], that is at current time step t
|
|
|
|
const bool peephole = (bool)params[0]; // if true, provide peephole connections
|
|
const bool projection = (bool)params[1]; // if true, then projection is performed, if false then numProj==numUnits is mandatory!!!!
|
|
double clippingCellValue = params[2]; // clipping value for ct, if it is not equal to zero, then cell state is clipped
|
|
double clippingProjValue = params[3]; // clipping value for projected ht, if it is not equal to zero, then projected cell output is clipped
|
|
const double forgetBias = params[4];
|
|
|
|
const int bS = xt->sizeAt(0);
|
|
const int inSize = xt->sizeAt(1);
|
|
const int numProj = ht_1->sizeAt(1);
|
|
const int numUnits = ct_1->sizeAt(1);
|
|
|
|
auto z = mmul(*xt, *Wx) + mmul(*ht_1, *Wh) + *b; // [bS x 4*numUnits] + [bS x 4*numUnits] + [1 x 4*numUnits] = [bS x 4*numUnits]
|
|
|
|
auto zit = z({0,0, 0, numUnits}); // z for input gate, = mmul(Wxi,xt) + mmul(Whi,ht_1) + bi = [bS x numUnits]
|
|
auto zft = z({0,0, numUnits, 2*numUnits}); // z for forget gate, = mmul(Wxf,xt) + mmul(Whf,ht_1) + bf = [bS x numUnits]
|
|
auto zct = z({0,0, 2*numUnits, 3*numUnits}); // z for cell state, = mmul(Wxc,xt) + mmul(Whc,ht_1) + bc = [bS x numUnits]
|
|
auto zot = z({0,0, 3*numUnits, 4*numUnits}); // z for output gate, = mmul(Wxo,xt) + mmul(Who,ht_1) + bo = [bS x numUnits]
|
|
|
|
if(peephole) { // add peephole connections: z + ct_1*Wc
|
|
zit += (*ct_1) * (*Wc)({0, numUnits}); // add peephole connections to input gate
|
|
zft += (*ct_1) * (*Wc)({numUnits, 2*numUnits}); // add peephole connections to forget gate
|
|
}
|
|
|
|
// current sell state = ft*ct_1 + it*tanh(mmul(Wxc,xt) + mmul(Whc,ht_1) + bc
|
|
ct->assign( sigmoid(zft + forgetBias) * (*ct_1) + sigmoid(zit) * tanh(zct) );
|
|
|
|
// if clipping value is provided then cell state is clipped by this value prior to the cell output activation
|
|
if(clippingCellValue > 0.0)
|
|
clipping(ct, clippingCellValue);
|
|
|
|
if(peephole)
|
|
zot += (*ct) * (*Wc)({{2*numUnits, 3*numUnits}}); // add peephole connections to output gate zot + ct*Wc
|
|
|
|
// current cell output = ot*tanh(ct)
|
|
auto htNoPeepHole = sigmoid(zot) * tanh(*ct); // = [bS x numUnits]
|
|
|
|
// apply projection
|
|
if(projection) {
|
|
ht->assign( mmul(htNoPeepHole, *Wp) ); // [bS x numUnits] * [ numUnits x numProj] = [bS x numProj]
|
|
// if clipping projection is provided then projected cell output state is clipped by this value
|
|
if(clippingProjValue != 0.)
|
|
clipping(ht, clippingProjValue);
|
|
}
|
|
else
|
|
ht->assign(&htNoPeepHole);
|
|
}
|
|
|
|
|
|
|
|
void lstmBlockCell(const NDArray* xt, const NDArray* cLast, const NDArray* yLast,
|
|
const NDArray* W, const NDArray* Wci, const NDArray* Wcf, const NDArray* Wco, const NDArray* b,
|
|
NDArray* i, NDArray* c, NDArray* f, NDArray* o, NDArray* z, NDArray* h, NDArray* y, const std::vector<double>& params) {
|
|
/* Input arrays:
|
|
* 0: xt - input [bS, inSize] at time t
|
|
* 1: cLast (cs_prev) - previous cell state [bS, numUnits], time t-1
|
|
* 2: yLast (h_prev) - previous output [bS, numUnits], time t-1
|
|
* 3: W - Weights - concatenated (input-to-hidden, hidden-to-hidden weights) weights, [(inSize+numUnits), 4*numUnits]
|
|
* 4: Wci - weights - cell peephole (t-1) connections to input modulation gate, [numUnits]
|
|
* 5: Wcf - weights - cell peephole (t-1) connections to forget gate, [numUnits]
|
|
* 6: Wco - weights - cell peephole (t) connections to output gate, [numUnits]
|
|
* 7: b - biases, [4*numUnits]
|
|
*
|
|
* Input integer arguments:
|
|
* 0: if not zero, provide peephole connections
|
|
*
|
|
* Input float arguments:
|
|
* 0: the bias added to forget gates in order to reduce the scale of forgetting in the beginning of the training
|
|
* 1: clipping value for cell state, if it is not equal to zero, then cell state is clipped
|
|
*
|
|
* Output arrays:
|
|
* 0: i - Input modulation gate activations [bS, numUnits]
|
|
* 1: c (cs) - Cell state (pre tanh) [bs, numUnits] (cs)
|
|
* 2: f - Output - forget gate activations [bs, numUnits]
|
|
* 3: o - Output - output gate activations [bs, numUnits]
|
|
* 4: z (ci) - Output - block input [bs, numUnits]
|
|
* 5: h (co) - Cell state, post tanh [bs, numUnits]
|
|
* 6: y (h) - Current cell output [bS, numUnits], time t
|
|
*/
|
|
const bool peephole = (bool)params[0]; // if true, provide peephole connections
|
|
const double forgetBias = params[1];
|
|
const double clippingCellValue = params[2]; // clipping value for ct, if it is not equal to zero, then cell state is clipped
|
|
|
|
|
|
const int bS = xt->sizeAt(0);
|
|
const int inSize = xt->sizeAt(1);
|
|
const int numUnits = cLast->sizeAt(1);
|
|
|
|
//Concat inputs: [xt, yt-1]: concat([bs,nIn],[bs,nOut]) -> [bs, (nIn+nOut)]
|
|
nd4j::ops::concat concat;
|
|
Context cContext(119);
|
|
auto concatOut = NDArrayFactory::create(xt->ordering(), {xt->sizeAt(0), xt->sizeAt(1) + yLast->sizeAt(1)}, xt->dataType(), xt->getContext());
|
|
cContext.setInputArray(0, const_cast<NDArray*>(xt), false);
|
|
cContext.setInputArray(1, const_cast<NDArray*>(yLast), false);
|
|
cContext.setOutputArray(0, &concatOut, false);
|
|
cContext.getIArguments()->emplace_back(1);
|
|
|
|
concat.execute(&cContext);
|
|
|
|
auto m = mmul(concatOut, *W); //mmul: [bs, (nIn+numUnits)]* [(inSize+numUnits), 4*numUnits] = [bs, 4*numUnits]
|
|
m += (*b);
|
|
|
|
//Note: weights are ordered [inputGate, blockInput, forgetGate, outputGate] to match TF (TF code comments state [i,f,z/ci,o] but behaviour is [i,z,f,o])
|
|
auto zi = m({0,0, 0, numUnits}); // z for input modulation gate, [bS, numUnits]
|
|
auto zz = m({0,0, numUnits, 2*numUnits}); // z for block input, [bS, numUnits]
|
|
auto zf = m({0,0, 2*numUnits, 3*numUnits}); // z for forget gate, [bS, numUnits]
|
|
auto zo = m({0,0, 3*numUnits, 4*numUnits}); // z for output gate, [bS, numUnits]
|
|
|
|
if(peephole) { // add peephole connections: z + ct_1*Wc
|
|
zi += (*cLast) * (*Wci); // add peephole connections to input gate
|
|
zf += (*cLast) * (*Wcf); // add peephole connections to forget gate
|
|
}
|
|
|
|
// current sell state = ft*cLast + it*tanh(mmul(Wxc,xt) + mmul(Whc,ht_1) + bc
|
|
if(forgetBias != 0.0){
|
|
zf += forgetBias;
|
|
}
|
|
|
|
zz.applyTransform(transform::Tanh, z); //z = tanh(zz)
|
|
zi.applyTransform(transform::Sigmoid, i); //i = sigmoid(zi)
|
|
zf.applyTransform(transform::Sigmoid, f); //f = sigmoid(zf);
|
|
|
|
|
|
//cell state = blockInput .* inputGate + prevCellState .* forgetGate
|
|
z->applyPairwiseTransform(pairwise::Multiply, i, c, nullptr); //c = z * i
|
|
auto temp = (*f) * (*cLast);
|
|
*c += temp; //c = (i * z) + (zf * (*cLast))
|
|
c->applyTransform(transform::Tanh, h); //h = tanh(c)
|
|
|
|
|
|
// if clipping value is provided then cell state is clipped by this value prior to the cell output activation
|
|
if(clippingCellValue > 0.0) {
|
|
clipping(c, clippingCellValue);
|
|
}
|
|
|
|
if(peephole) {
|
|
// add peephole connections to output gate zot + ct*Wc
|
|
auto prod = *c * (*Wco);
|
|
zo += prod;
|
|
}
|
|
zo.applyTransform(transform::Sigmoid, o); // o = sigmoid(zo)
|
|
|
|
// current cell output = ot*tanh(ct)
|
|
c->applyTransform(transform::Tanh, h); //h = tanh(c)
|
|
o->applyPairwiseTransform(pairwise::Multiply, h, y, nullptr); //y = o * h
|
|
}
|
|
|
|
|
|
}
|
|
}
|
|
}
|
|
|