* initial commit Signed-off-by: raver119 <raver119@gmail.com> * Added gradcheck test for dynamic_partition_bp op. * - implementation of dilation op (cpu and cuda) Signed-off-by: Yurii <yurii@skymind.io> * Fixed broadcast_dynamic_shape 1D case and tests. * Fixed usage of default integer arguments. * Fixed dynamic_partition_bp op and tests. * Eliminated test with grad check for dynamic_partition_bp op. * start working on cuda svd - porting available corresponding api from cuSOLVER library Signed-off-by: Yurii <yurii@skymind.io> * provide prelu_bp Signed-off-by: Yurii <yurii@skymind.io> * - provide gruCell_bp (old version ??) Signed-off-by: Yurii <yurii@skymind.io> * - polishing cumsum_bp and cumprod_bp tests Signed-off-by: Yurii <yurii@skymind.io> * provide sparseSoftmaxCrossEntropyWithLogits and sparseSoftmaxCrossEntropyWithLogits_grad Signed-off-by: Yurii <yurii@skymind.io> * Fixed atomicMul with float input/output * implementation of cuda kernel for triu_bp operation Signed-off-by: Yurii <yurii@skymind.io> * Refactored lup helper to add parrallel computing. * cusolver libraries Signed-off-by: raver119 <raver119@gmail.com> * uncomment cuSolver APIs in svd.cu Signed-off-by: Yurii <yurii@skymind.io> * cusolver var Signed-off-by: raver119 <raver119@gmail.com> * - further work on cuSolver svd Signed-off-by: Yurii <yurii@skymind.io> * Implement usage of cuda solver to LUP decomposition. * - correct naames in lup functions Signed-off-by: Yurii <yurii@skymind.io> * correct svdQR cuda Signed-off-by: Yurii <yurii@skymind.io> * - provide transpositions of input matrices in case of c order in svdCudaQR Signed-off-by: Yurii <yurii@skymind.io> * Fixed implementation issues with LUP usign cuda solver. * Implementation of matrix_determinant helper with cuda kernels. Working revision. * Implemented log_matrix_determinant helper with cuda kernels. * - implementation of batched cuda svd Signed-off-by: Yurii <yurii@skymind.io> * Refactored cholesky helper and implementation of cuda solver cholesky batch. * - implementation of cuda kernel for tile bp Signed-off-by: Yurii <yurii@skymind.io> * Implementation of cholesky and logdet with cuda kernels. * - implementation of cuda kernel for sru_bidirectional Signed-off-by: Yurii <yurii@skymind.io> * Fixed cholesky helper. * Cholesky op helper implementation. Working double-based cublas implementation. * bad import excluded Signed-off-by: raver119 <raver119@gmail.com> * Finished with cuda implementation of cholesky helper and tests. * - implementation of cuda kernel for sru_bidirectional_backprop operation Signed-off-by: Yurii <yurii@skymind.io> * Implementation of matrix_inverse op helper with cuda kernels. The first revision. * - start working on gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * Implementation of matrix_inverse helper. * - further work on new gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * cuBLAS related fixes Signed-off-by: raver119 <raver119@gmail.com> * calculateOutputShapes() now passes device buffers as well Signed-off-by: raver119 <raver119@gmail.com> * special concat/average/accumulate init host pointers now Signed-off-by: raver119 <raver119@gmail.com> * few more tweaks Signed-off-by: raver119 <raver119@gmail.com> * additional CudaDataBufferFactory signatures certain for data types Signed-off-by: raver119 <raver119@gmail.com> * cuSolver host buffer Signed-off-by: raver119 <raver119@gmail.com> * buffer to buffer memcpy host ptr allocation Signed-off-by: raver119 <raver119@gmail.com>
138 lines
5.3 KiB
Plaintext
138 lines
5.3 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Yurii Shyrma (iuriish@yahoo.com)
|
|
//
|
|
|
|
#include <ops/declarable/helpers/dilation2d.h>
|
|
#include <array/DataTypeUtils.h>
|
|
#include <PointersManager.h>
|
|
|
|
namespace nd4j {
|
|
namespace ops {
|
|
namespace helpers {
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template <typename X, typename Z>
|
|
__global__ static void dilation2dCuda(const void* vx, const Nd4jLong* xShapeInfo,
|
|
const void* vy, const Nd4jLong* yShapeInfo,
|
|
void* vz, const Nd4jLong* zShapeInfo,
|
|
const int sH, const int sW,
|
|
const int pH, const int pW,
|
|
const int dH, const int dW) {
|
|
|
|
// x [bS, iH, iW, iC]
|
|
// y [kH, kW, iC]
|
|
// z [bS, oH, oW, iC]
|
|
|
|
const X* x = reinterpret_cast<const X*>(vx);
|
|
const X* y = reinterpret_cast<const X*>(vy);
|
|
Z* z = reinterpret_cast<Z*>(vz);
|
|
|
|
__shared__ int xzRank, yRank;
|
|
__shared__ uint iH, iW, kH, kW;
|
|
__shared__ Nd4jLong *sharedMem, zLen;
|
|
|
|
if (threadIdx.x == 0) {
|
|
extern __shared__ unsigned char shmem[];
|
|
sharedMem = reinterpret_cast<Nd4jLong*>(shmem);
|
|
|
|
zLen = shape::length(zShapeInfo);
|
|
|
|
xzRank = shape::rank(xShapeInfo);
|
|
yRank = shape::rank(yShapeInfo);
|
|
|
|
iH = xShapeInfo[2];
|
|
iW = xShapeInfo[3];
|
|
|
|
kH = yShapeInfo[1];
|
|
kW = yShapeInfo[2];
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
const auto zInd = threadIdx.x + blockIdx.x * blockDim.x;
|
|
|
|
if(zInd >= zLen)
|
|
return;
|
|
|
|
auto xzCoords = sharedMem + threadIdx.x * (xzRank + yRank);
|
|
auto yCoords = xzCoords + xzRank;
|
|
|
|
shape::index2coords(xzRank, zShapeInfo + 1, zInd, zLen, xzCoords);
|
|
|
|
const auto zOffset = shape::getOffset(zShapeInfo, xzCoords);
|
|
|
|
yCoords[2] = xzCoords[3]; // iC coordinate is same for x, y and z
|
|
|
|
const auto oh = xzCoords[1];
|
|
const auto ow = xzCoords[2];
|
|
|
|
X max = -DataTypeUtils::max<X>();
|
|
|
|
for (yCoords[0] = 0; yCoords[0] < kH; ++yCoords[0]) {
|
|
xzCoords[1] = oh * sH - pH + yCoords[0] * dH;
|
|
if (xzCoords[1] < 0 || xzCoords[1] >= iH) continue;
|
|
|
|
for (yCoords[1] = 0; yCoords[1] < kW; ++yCoords[1]) {
|
|
xzCoords[2] = ow * sW - pW + yCoords[1] * dW;
|
|
if(xzCoords[2] < 0 || xzCoords[2] >= iW) continue;
|
|
|
|
const X val = x[shape::getOffset(xShapeInfo, xzCoords)] + y[shape::getOffset(yShapeInfo, yCoords)];
|
|
if (val > max)
|
|
max = val;
|
|
}
|
|
}
|
|
|
|
z[zOffset] = static_cast<Z>(max);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template <typename X, typename Z>
|
|
static void dilation2dCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream,
|
|
const void* vx, const Nd4jLong* xShapeInfo,
|
|
const void* vy, const Nd4jLong* yShapeInfo,
|
|
void* vz, const Nd4jLong* zShapeInfo,
|
|
const int sH, const int sW,
|
|
const int pH, const int pW,
|
|
const int dH, const int dW) {
|
|
|
|
dilation2dCuda<X,Z><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo, sH, sW, pH, pW, dH, dW);
|
|
}
|
|
|
|
BUILD_DOUBLE_TEMPLATE(template void dilation2dCudaLauncher, (const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const void* vx, const Nd4jLong* xShapeInfo, const void* vy, const Nd4jLong* yShapeInfo, void* vz, const Nd4jLong* zShapeInfo, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW), LIBND4J_TYPES, FLOAT_TYPES);
|
|
|
|
void dilation2d(nd4j::LaunchContext* context, NDArray *input, NDArray *weights, NDArray *output, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW) {
|
|
|
|
PointersManager manager(context, "dilation2d");
|
|
|
|
const int threadsPerBlock = MAX_NUM_THREADS / 2;
|
|
const int blocksPerGrid = (output->lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
|
|
const int sharedMem = (weights->rankOf() + output->rankOf()) * sizeof(Nd4jLong) * threadsPerBlock + 128;
|
|
|
|
NDArray::prepareSpecialUse({output}, {input, weights});
|
|
BUILD_DOUBLE_SELECTOR(input->dataType(), output->dataType(), dilation2dCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), input->getSpecialBuffer(), input->getSpecialShapeInfo(), weights->getSpecialBuffer(), weights->getSpecialShapeInfo(), output->specialBuffer(), output->specialShapeInfo(), sH, sW, pH, pW, dH, dW), LIBND4J_TYPES, FLOAT_TYPES);
|
|
NDArray::registerSpecialUse({output}, {input, weights});
|
|
|
|
manager.synchronize();
|
|
}
|
|
|
|
|
|
}
|
|
}
|
|
}
|