43 lines
1.5 KiB
C++
43 lines
1.5 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author sgazeos@gmail.com
|
|
//
|
|
|
|
#include <ops/declarable/helpers/axis.h>
|
|
#include <op_boilerplate.h>
|
|
|
|
namespace nd4j {
|
|
namespace ops {
|
|
namespace helpers {
|
|
template <typename T>
|
|
static void applyGradientDescent_(NDArray* input, NDArray* step, double weight, NDArray* output) {
|
|
auto lambda = LAMBDA_TT(_x, _y, weight) {
|
|
return _x - (_y * weight);
|
|
};
|
|
|
|
input->applyPairwiseLambda<T>(step, lambda, output);
|
|
}
|
|
|
|
void applyGradientDescent(nd4j::LaunchContext* context, NDArray* input, NDArray* step, double weight, NDArray* output) {
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), applyGradientDescent_, (input, step, weight, output), FLOAT_TYPES);
|
|
}
|
|
BUILD_SINGLE_TEMPLATE(template void applyGradientDescent_, (NDArray* input, NDArray* step, double weight, NDArray* output), FLOAT_TYPES);
|
|
}
|
|
}
|
|
}
|