cavis/libnd4j/include/ops/declarable/generic/recurrent/lstm.cpp

166 lines
10 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2019 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma, created on 15.02.2018
//
#include <op_boilerplate.h>
#if NOT_EXCLUDED(OP_lstm)
#include <ops/declarable/CustomOperations.h>
#include<ops/declarable/helpers/lstm.h>
namespace nd4j {
namespace ops {
//////////////////////////////////////////////////////////////////////////
CUSTOM_OP_IMPL(lstm, 8, 2, false, 3, 2) {
auto x = INPUT_VARIABLE(0); // input [time x bS x inSize]
auto h0 = INPUT_VARIABLE(1); // initial cell output (at time step = 0) [bS x numProj], in case of projection=false -> numProj == numUnits !!!
auto c0 = INPUT_VARIABLE(2); // initial cell state (at time step = 0) [bS x numUnits],
auto Wx = INPUT_VARIABLE(3); // input-to-hidden weights, [inSize x 4*numUnits]
auto Wh = INPUT_VARIABLE(4); // hidden-to-hidden weights, [numProj x 4*numUnits]
auto Wc = INPUT_VARIABLE(5); // diagonal weights for peephole connections [3*numUnits]
auto Wp = INPUT_VARIABLE(6); // projection weights [numUnits x numProj]
auto b = INPUT_VARIABLE(7); // biases, [4*numUnits]
auto h = OUTPUT_VARIABLE(0); // cell outputs [time x bS x numProj], that is per each time step
auto c = OUTPUT_VARIABLE(1); // cell states [time x bS x numUnits] that is per each time step
const int peephole = INT_ARG(0); // if 1, provide peephole connections
const int projection = INT_ARG(1); // if 1, then projection is performed, if false then numProj==numUnits is mandatory!!!!
// FIXME: double
const double clippingCellValue = T_ARG(0); // clipping value for ct, if it is not equal to zero, then cell state is clipped
const double clippingProjValue = T_ARG(1); // clipping value for projected ht, if it is not equal to zero, then projected cell output is clipped
const double forgetBias = T_ARG(2);
const int rank = x->rankOf();
const int time = x->sizeAt(0);
const int bS = x->sizeAt(1);
const int inSize = x->sizeAt(2);
const int numProj = h0->sizeAt(1);
const int numUnits = c0->sizeAt(1);
// input shapes validation
const std::string h0Shape = ShapeUtils::shapeAsString(h0);
const std::string correctH0Shape = ShapeUtils::shapeAsString({bS, numProj});
const std::string c0Shape = ShapeUtils::shapeAsString(c0);
const std::string correctC0Shape = ShapeUtils::shapeAsString({bS, numUnits});
const std::string WxShape = ShapeUtils::shapeAsString(Wx);
const std::string correctWxShape = ShapeUtils::shapeAsString({inSize, 4*numUnits});
const std::string WhShape = ShapeUtils::shapeAsString(Wh);
const std::string correctWhShape = ShapeUtils::shapeAsString({numProj, 4*numUnits});
const std::string WcShape = ShapeUtils::shapeAsString(Wc);
const std::string correctWcShape = ShapeUtils::shapeAsString({3*numUnits});
const std::string WpShape = ShapeUtils::shapeAsString(Wp);
const std::string correctWpShape = ShapeUtils::shapeAsString({numUnits, numProj});
const std::string bShape = ShapeUtils::shapeAsString(b);
const std::string correctBShape = ShapeUtils::shapeAsString({4*numUnits});
REQUIRE_TRUE(correctH0Shape == h0Shape, 0, "LSTM operation: wrong shape of initial cell output, expected is %s, but got %s instead !", correctH0Shape.c_str(), h0Shape.c_str());
REQUIRE_TRUE(correctC0Shape == c0Shape, 0, "LSTM operation: wrong shape of initial cell state, expected is %s, but got %s instead !", correctC0Shape.c_str(), c0Shape.c_str());
REQUIRE_TRUE(correctWxShape == WxShape, 0, "LSTM operation: wrong shape of input-to-hidden weights, expected is %s, but got %s instead !", correctWxShape.c_str(), WxShape.c_str());
REQUIRE_TRUE(correctWhShape == WhShape, 0, "LSTM operation: wrong shape of hidden-to-hidden weights, expected is %s, but got %s instead !", correctWhShape.c_str(), WhShape.c_str());
REQUIRE_TRUE(correctWcShape == WcShape, 0, "LSTM operation: wrong shape of diagonal weights for peephole connections, expected is %s, but got %s instead !", correctWcShape.c_str(), WcShape.c_str());
REQUIRE_TRUE(correctWpShape == WpShape, 0, "LSTM operation: wrong shape of projection weights, expected is %s, but got %s instead !", correctWpShape.c_str(), WpShape.c_str());
REQUIRE_TRUE(correctBShape == bShape, 0, "LSTM operation: wrong shape of biases, expected is %s, but got %s instead !", correctBShape.c_str(), bShape.c_str());
REQUIRE_TRUE(!(!projection && numUnits != numProj), 0, "LSTM operation: projection option is switched of, and in this case output dimensionality for the projection matrices (numProj) must be equal to number of units in lstmCell !");
helpers::lstmTimeLoop(block.launchContext(), x, h0, c0, Wx, Wh, Wc, Wp, b, h, c, {(double)peephole, (double)projection, clippingCellValue, clippingProjValue, forgetBias});
return Status::OK();
}
DECLARE_TYPES(lstm) {
getOpDescriptor()
->setAllowedInputTypes(nd4j::DataType::ANY)
->setAllowedOutputTypes({ALL_FLOATS});
}
DECLARE_SHAPE_FN(lstm) {
auto xShapeInfo = inputShape->at(0); // input [time x bS x inSize]
auto h0ShapeInfo = inputShape->at(1); // initial cell output (at time step = 0) [bS x numProj], in case of projection=false -> numProj == numUnits !!!
auto c0ShapeInfo = inputShape->at(2); // initial cell state (at time step = 0) [bS x numUnits],
auto WxShapeInfo = inputShape->at(3); // input-to-hidden weights, [inSize x 4*numUnits]
auto WhShapeInfo = inputShape->at(4); // hidden-to-hidden weights, [numProj x 4*numUnits]
auto WcShapeInfo = inputShape->at(5); // diagonal weights for peephole connections [3*numUnits]
auto WpShapeInfo = inputShape->at(6); // projection weights [numUnits x numProj]
auto bShapeInfo = inputShape->at(7); // biases, [4*numUnits]
const int rank = xShapeInfo[0];
const int time = xShapeInfo[1];
const int bS = xShapeInfo[2];
const int inSize = xShapeInfo[3];
const int numProj = h0ShapeInfo[2];
const int numUnits = c0ShapeInfo[2];
// input shapes validation
const std::string h0Shape = ShapeUtils::shapeAsString(h0ShapeInfo);
const std::string correctH0Shape = ShapeUtils::shapeAsString({bS, numProj});
const std::string c0Shape = ShapeUtils::shapeAsString(c0ShapeInfo);
const std::string correctC0Shape = ShapeUtils::shapeAsString({bS, numUnits});
const std::string WxShape = ShapeUtils::shapeAsString(WxShapeInfo);
const std::string correctWxShape = ShapeUtils::shapeAsString({inSize, 4*numUnits});
const std::string WhShape = ShapeUtils::shapeAsString(WhShapeInfo);
const std::string correctWhShape = ShapeUtils::shapeAsString({numProj, 4*numUnits});
const std::string WcShape = ShapeUtils::shapeAsString(WcShapeInfo);
const std::string correctWcShape = ShapeUtils::shapeAsString({3*numUnits});
const std::string WpShape = ShapeUtils::shapeAsString(WpShapeInfo);
const std::string correctWpShape = ShapeUtils::shapeAsString({numUnits, numProj});
const std::string bShape = ShapeUtils::shapeAsString(bShapeInfo);
const std::string correctBShape = ShapeUtils::shapeAsString({4*numUnits});
REQUIRE_TRUE(correctH0Shape == h0Shape, 0, "LSTM operation: wrong shape of initial cell output, expected is %s, but got %s instead !", correctH0Shape.c_str(), h0Shape.c_str());
REQUIRE_TRUE(correctC0Shape == c0Shape, 0, "LSTM operation: wrong shape of initial cell state, expected is %s, but got %s instead !", correctC0Shape.c_str(), c0Shape.c_str());
REQUIRE_TRUE(correctWxShape == WxShape, 0, "LSTM operation: wrong shape of input-to-hidden weights, expected is %s, but got %s instead !", correctWxShape.c_str(), WxShape.c_str());
REQUIRE_TRUE(correctWhShape == WhShape, 0, "LSTM operation: wrong shape of hidden-to-hidden weights, expected is %s, but got %s instead !", correctWhShape.c_str(), WhShape.c_str());
REQUIRE_TRUE(correctWcShape == WcShape, 0, "LSTM operation: wrong shape of diagonal weights for peephole connections, expected is %s, but got %s instead !", correctWcShape.c_str(), WcShape.c_str());
REQUIRE_TRUE(correctWpShape == WpShape, 0, "LSTM operation: wrong shape of projection weights, expected is %s, but got %s instead !", correctWpShape.c_str(), WpShape.c_str());
REQUIRE_TRUE(correctBShape == bShape, 0, "LSTM operation: wrong shape of biases, expected is %s, but got %s instead !", correctBShape.c_str(), bShape.c_str());
// evaluate output shapeInfos
Nd4jLong *hShapeInfo(nullptr), *cShapeInfo(nullptr);
ALLOCATE(hShapeInfo, block.getWorkspace(), shape::shapeInfoLength(rank), Nd4jLong); // [time x bS x numProj]
ALLOCATE(cShapeInfo, block.getWorkspace(), shape::shapeInfoLength(rank), Nd4jLong); // [time x bS x numUnits]
hShapeInfo[0] = cShapeInfo[0] = rank;
hShapeInfo[1] = cShapeInfo[1] = time;
hShapeInfo[2] = cShapeInfo[2] = bS;
hShapeInfo[3] = numProj;
cShapeInfo[3] = numUnits;
ShapeUtils::updateStridesAndType(hShapeInfo, xShapeInfo, shape::order(h0ShapeInfo));
ShapeUtils::updateStridesAndType(cShapeInfo, xShapeInfo, shape::order(c0ShapeInfo));
return SHAPELIST(CONSTANT(hShapeInfo), CONSTANT(cShapeInfo));
}
}
}
#endif