cavis/libnd4j/include/ops/declarable/generic/nn/convo/deconv3d.cpp

337 lines
22 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 05.09.2018
//
#include <op_boilerplate.h>
#if NOT_EXCLUDED(OP_deconv3d)
#include <ops/declarable/CustomOperations.h>
#include <ops/declarable/helpers/convolutions.h>
#include <ops/declarable/helpers/addBias.h>
#include <MmulHelper.h>
namespace nd4j {
namespace ops {
CUSTOM_OP_IMPL(deconv3d, 2, 1, false, 0, 13) {
auto input = INPUT_VARIABLE(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW)
auto weights = INPUT_VARIABLE(1); // [kD, kH, kW, oC, iC] always
auto bias = block.width() > 2 ? INPUT_VARIABLE(2) : nullptr; // [oC]
auto output = OUTPUT_VARIABLE(0); // [bS, oD, oH, oW, oC] (NDHWC) or [bS, oC, oD, oH, oW] (NCDHW)
REQUIRE_TRUE(input->rankOf() == 5, 0, "CUSTOM DECONV3D OP: rank of input array must be equal to 5, but got %i instead !", input->rankOf());
REQUIRE_TRUE(weights->rankOf() == 5, 0, "CUSTOM DECONV3D OP: rank of weights array must be equal to 5, but got %i instead !", weights->rankOf());
int kD = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast<int>(weights->sizeAt(0)); // filter(kernel) depth
int kH = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast<int>(weights->sizeAt(1)); // filter(kernel) height
int kW = INT_ARG(2) > 0 ? INT_ARG(2) : static_cast<int>(weights->sizeAt(2)); // filter(kernel) width
int sD = INT_ARG(3); // strides depth
int sH = INT_ARG(4); // strides height
int sW = INT_ARG(5); // strides width
int pD = INT_ARG(6); // paddings depth
int pH = INT_ARG(7); // paddings height
int pW = INT_ARG(8); // paddings width
int dD = INT_ARG(9); // dilations depth
int dH = INT_ARG(10); // dilations height
int dW = INT_ARG(11); // dilations width
int isSameMode = INT_ARG(12); // 0-SAME, 1-VALID
int isNCDHW = block.getIArguments()->size() > 13 ? !INT_ARG(13) : 1; // INT_ARG(13): 1-NDHWC, 0-NCDHW
int bS, iC, iD, iH, iW, oC, oD, oH, oW; // batch size, input channels, input depth/height/width, output channels, output depth/height/width;
int indIOioC, indIOioD, indWoC, indWiC, indWkD; // corresponding indexes
ConvolutionUtils::getSizesAndIndexesConv3d(isNCDHW, *input, *output, bS, iC, iD, iH, iW, oC, oD, oH, oW, indIOioC, indIOioD, indWoC, indWiC, indWkD);
std::vector<Nd4jLong> expectedWeightsShape = {kD, kH, kW, oC, iC};
REQUIRE_TRUE(weights->isSameShape(expectedWeightsShape), 0, "CUSTOM DECONV3D OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weights).c_str());
if (bias)
REQUIRE_TRUE(bias->rankOf() <= 2 && oC == bias->lengthOf(), 0, "CUSTOM DECONV3D OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, bias->rankOf(), bias->lengthOf());
if(!isNCDHW)
output = new NDArray(output->permute({0, 4, 1, 2, 3})); // [bS, oD, oH, oW, oC] -> [bS, oC, oD, oH, oW]
if(isSameMode) // Note: we're intentionally swapping iH and oH, to calculated the padding for a"normal" conv (not deconv) forward pass
ConvolutionUtils::calcPadding3D(pD, pH, pW, iD, iH, iW, oD, oH, oW, kD, kH, kW, sD, sH, sW, dD, dH, dW);
NDArray columns(input->ordering(), {bS, oC, kD, kH, kW, iD, iH, iW}, input->dataType(), block.launchContext());
//----- calculation of output -----//
// NDHWC: [kD, kH, kW, oC, iC] x [bS, iD, iH, iW, iC] = [kD, kH, kW, oC, bS, iD, iH, iW]
// NCDHW: [kD, kH, kW, oC, iC] x [bS, iC, iD, iH, iW] = [kD, kH, kW, oC, bS, iD, iH, iW]
nd4j::MmulHelper::tensorDot(weights, input, &columns, {indWiC}, {indIOioC}, {2, 3, 4, 1, 0, 5, 6, 7}); // [bS, oC, kD, kH, kW, iD, iH, iW] -> [kD, kH, kW, oC, bS, iD, iH, iW]
ConvolutionUtils::col2vol(block, columns, *output, sD, sH, sW, pD, pH, pW, dD, dH, dW); // [bS, oC, kD, kH, kW, iD, iH, iW] is de-convoluted to [bS, oC, oD, oH, oW]
//----- add biases if required -----//
if(bias)
// output->applyBroadcast(broadcast::Add,{1}, bias);
helpers::addBias(block, *output, *bias, *output, true);
if(!isNCDHW)
delete output;
return Status::OK();
}
DECLARE_TYPES(deconv3d) {
getOpDescriptor()
->setAllowedInputTypes(0, nd4j::DataType::ANY)
->setAllowedInputTypes(1, {ALL_FLOATS})
->setAllowedInputTypes(2, {ALL_FLOATS})
->setAllowedOutputTypes({ALL_FLOATS});
}
DECLARE_SHAPE_FN(deconv3d) {
auto inputShapeInfo = inputShape->at(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NDCHW)
auto weightsShapeInfo = inputShape->at(1); // [kD, kH, kW, oC, iC] always
auto biasShapeInfo = block.width() > 2 ? inputShape->at(2) : nullptr; // [oC]
const int rank = 5;
REQUIRE_TRUE(shape::rank(inputShapeInfo) == rank, 0, "CUSTOM DECONV3D OP: rank of input array must be equal to %i, but got %i instead !", rank, shape::rank(inputShapeInfo));
REQUIRE_TRUE(shape::rank(weightsShapeInfo) == rank, 0, "CUSTOM DECONV3D OP: rank of weights array must be equal to %i, but got %i instead !", rank, shape::rank(weightsShapeInfo));
int kD = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast<int>(shape::sizeAt(weightsShapeInfo, 0));// filter(kernel) depth
int kH = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast<int>(shape::sizeAt(weightsShapeInfo, 1));// filter(kernel) height
int kW = INT_ARG(2) > 0 ? INT_ARG(2) : static_cast<int>(shape::sizeAt(weightsShapeInfo, 2));// filter(kernel) width
int sD = INT_ARG(3); // strides depth
int sH = INT_ARG(4); // strides height
int sW = INT_ARG(5); // strides width
int pD = INT_ARG(6); // paddings depth
int pH = INT_ARG(7); // paddings height
int pW = INT_ARG(8); // paddings width
int dD = INT_ARG(9); // dilations depth
int dH = INT_ARG(10); // dilations height
int dW = INT_ARG(11); // dilations width
int isSameMode = INT_ARG(12); // 0-SAME, 1-VALID
int isNCDHW = block.getIArguments()->size() > 13 ? !INT_ARG(13) : 1; // INT_ARG(13): 1-NDHWC, 0-NCDHW
int indIOioC, indIiD, indWoC(3);
if(!isNCDHW) {
indIOioC = 4; indIiD = 1;
}
else {
indIOioC = 1; indIiD = 2;
}
const int bS = inputShapeInfo[1]; // batch size
const int iD = inputShapeInfo[indIiD+1]; // input depth
const int iH = inputShapeInfo[indIiD+2]; // input height
const int iW = inputShapeInfo[indIiD+3]; // input width
const int iC = inputShapeInfo[indIOioC+1]; // input channels
const int oC = weightsShapeInfo[indWoC+1]; // output channels
std::vector<Nd4jLong> expectedWeightsShape = {kD, kH, kW, oC, iC};
REQUIRE_TRUE(shape::shapeEquals(5, expectedWeightsShape.data(), shape::rank(weightsShapeInfo), shape::shapeOf(weightsShapeInfo)), 0, "CUSTOM DECONV3D OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weightsShapeInfo).c_str());
if (biasShapeInfo)
REQUIRE_TRUE(shape::rank(biasShapeInfo) <= 2 && oC == shape::length(biasShapeInfo), 0, "CUSTOM DECONV3D OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, shape::rank(biasShapeInfo), shape::length(biasShapeInfo));
int oD, oH, oW; // output depth, height, width
ConvolutionUtils::calcOutSizeDeconv3D(oD, oH, oW, kD, kH, kW, sD, sH, sW, pD, pH, pW, dD, dH, dW, iD, iH, iW, isSameMode);
Nd4jLong* outputShapeInfo = nullptr;
ALLOCATE(outputShapeInfo, block.getWorkspace(), shape::shapeInfoLength(inputShapeInfo), Nd4jLong);
outputShapeInfo[0] = rank;
outputShapeInfo[1] = bS;
if (isNCDHW) {
outputShapeInfo[2] = oC;
outputShapeInfo[3] = oD;
outputShapeInfo[4] = oH;
outputShapeInfo[5] = oW;
} else {
outputShapeInfo[2] = oD;
outputShapeInfo[3] = oH;
outputShapeInfo[4] = oW;
outputShapeInfo[5] = oC;
}
ShapeUtils::updateStridesAndType(outputShapeInfo, weightsShapeInfo, shape::order(inputShapeInfo));
return SHAPELIST(CONSTANT(outputShapeInfo));
}
//////////////////////////////////////////////////////////////////////////
CUSTOM_OP_IMPL(deconv3d_bp, 3, 2, false, 0, 13) {
auto input = INPUT_VARIABLE(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW)
auto weights = INPUT_VARIABLE(1); // [kD, kH, kW, oC, iC] always
auto bias = block.width() > 3 ? INPUT_VARIABLE(2) : nullptr; // [oC]
auto gradO = block.width() > 3 ? INPUT_VARIABLE(3) : INPUT_VARIABLE(2); // [bS, oD, oH, oW, oC] (NDHWC) or [bS, oC, oD, oH, oW] (NCDHW), epsilon_next
auto gradI = OUTPUT_VARIABLE(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW), gradI
auto gradW = OUTPUT_VARIABLE(1); // [kD, kH, kW, oC, iC] always
auto gradB = block.width() > 3 ? OUTPUT_VARIABLE(2) : nullptr; // [oC]
REQUIRE_TRUE(input->rankOf() == 5, 0, "CUSTOM DECONV3D_BP OP: rank of input array must be equal to 5, but got %i instead !", input->rankOf());
REQUIRE_TRUE(weights->rankOf() == 5, 0, "CUSTOM DECONV3D_BP OP: rank of weights array must be equal to 5 , but got %i instead !", weights->rankOf());
REQUIRE_TRUE(gradO->rankOf() == 5, 0, "CUSTOM DECONV3D_BP OP: rank of output gradients (next epsilon) array must be equal to 5, but got %i instead !", gradO->rankOf());
int kD = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast<int>(weights->sizeAt(0));// filter(kernel) depth
int kH = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast<int>(weights->sizeAt(1));// filter(kernel) height
int kW = INT_ARG(2) > 0 ? INT_ARG(2) : static_cast<int>(weights->sizeAt(2));// filter(kernel) width
int sD = INT_ARG(3); // strides depth
int sH = INT_ARG(4); // strides height
int sW = INT_ARG(5); // strides width
int pD = INT_ARG(6); // paddings depth
int pH = INT_ARG(7); // paddings height
int pW = INT_ARG(8); // paddings width
int dD = INT_ARG(9); // dilations depth
int dH = INT_ARG(10); // dilations height
int dW = INT_ARG(11); // dilations width
int isSameMode = INT_ARG(12); // 0-SAME, 1-VALID
int isNCDHW = block.getIArguments()->size() > 13 ? !INT_ARG(13) : 1; // INT_ARG(13): 1-NDHWC, 0-NCDHW
int bS, iC, iD, iH, iW, oC, oD, oH, oW; // batch size, input channels, input depth/height/width, output channels, output depth/height/width;
int indIOioC, indIOioD, indWoC, indWiC, indWkD; // corresponding indexes
ConvolutionUtils::getSizesAndIndexesConv3d(isNCDHW, *input, *gradO, bS, iC, iD, iH, iW, oC, oD, oH, oW, indIOioC, indIOioD, indWoC, indWiC, indWkD);
int trueoD, trueoH, trueoW; // true output height, width
ConvolutionUtils::calcOutSizeDeconv3D(trueoD, trueoH, trueoW, kD, kH, kW, sD, sH, sW, pD, pH, pW, dD, dH, dW, iD, iH, iW, isSameMode);
std::vector<Nd4jLong> expectedGradOShape = ShapeUtils::composeShapeUsingDimsAndIdx({bS,oC,trueoD,trueoH,trueoW, 0,indIOioC,indIOioD,indIOioD+1,indIOioD+2});
std::vector<Nd4jLong> expectedWeightsShape = {kD, kH, kW, oC, iC};
REQUIRE_TRUE(gradO->isSameShape(expectedGradOShape), 0, "CUSTOM DECONV3D_BP OP: wrong shape of output gradients (next epsilon) array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedGradOShape).c_str(), ShapeUtils::shapeAsString(gradO).c_str());
REQUIRE_TRUE(weights->isSameShape(expectedWeightsShape), 0, "CUSTOM DECONV3D_BP OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weights).c_str());
if(bias)
REQUIRE_TRUE(bias->rankOf() <= 2 && oC == bias->lengthOf(), 0, "CUSTOM DECONV3D_BP OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, bias->rankOf(), bias->lengthOf());
if(isSameMode) // Note: we're intentionally swapping iH and oH, to calculated the padding for a"normal" conv (not deconv) forward pass
ConvolutionUtils::calcPadding3D(pD, pH, pW, iD, iH, iW, oD, oH, oW, kD, kH, kW, sD, sH, sW, dD, dH, dW);
// ----- calculation of gradI -> pass it through conv3d_ff ----- //
nd4j::ops::conv3dnew conv3d;
const Nd4jStatus status = conv3d.execute({gradO, weights}, {gradI}, {}, {kD,kH,kW, sD,sH,sW, pD,pH,pW, dD,dH,dW, isSameMode, !isNCDHW}, {});
if (status != ND4J_STATUS_OK)
return status;
// -----prepare permutation arrays and axes for dot product ----- //
std::vector<int> inputAxesForDot;
if(!isNCDHW) {
gradO = new NDArray(gradO->permute({0, 4, 1, 2, 3})); // [bS, oD, oH, oW, oC] -> [bS, oC, oD, oH, oW]
inputAxesForDot = {0, 1, 2, 3}; // bS, iD, iH, iW
}
else
inputAxesForDot = {0, 2, 3, 4}; // bS, iD, iH, iW
// ----- calculation of gradW ----- //
auto columns = NDArrayFactory::create(input->ordering(), {bS, oC, kD, kH, kW, iD, iH, iW}, input->dataType(), block.launchContext());
ConvolutionUtils::vol2col(block, *gradO, columns, sD, sH, sW, pD, pH, pW, dD, dH, dW); // [bS, oC, oD, oH, oW] is deconvoluted to [bS, oC, kD, kH, kW, iD, iH, iW]
MmulHelper::tensorDot(input, &columns, gradW, inputAxesForDot, {0, 5, 6, 7}, {4, 3, 0, 1, 2}); // [bS, iC, iD, iH, iW]/[bS, iD, iH, iW, iC] x [bS, oC, kD, kH, kW, iD, iH, iW] = [iC, oC, kD, kH, kW]
// ----- calculation of gradB ----- //
if(gradB) {
if(gradB->rankOf() == 2)
gradB = new NDArray(gradB->reshape(gradB->ordering(), {(int)gradB->lengthOf()}));
gradO->reduceAlongDimension(reduce::Sum, gradB, {0, 2, 3, 4}); // sum over bS, oD, oH, oW
if(gradB != OUTPUT_VARIABLE(2))
delete gradB;
}
if(!isNCDHW)
delete gradO;
return Status::OK();
}
DECLARE_TYPES(deconv3d_bp) {
getOpDescriptor()
->setAllowedInputTypes(0, nd4j::DataType::ANY)
->setAllowedInputTypes(1, {ALL_FLOATS})
->setAllowedInputTypes(2, {ALL_FLOATS})
->setAllowedInputTypes(3, {ALL_FLOATS})
->setAllowedOutputTypes({ALL_FLOATS});
}
DECLARE_SHAPE_FN(deconv3d_bp) {
auto inputShapeInfo = inputShape->at(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW)
auto weightsShapeInfo = inputShape->at(1); // [kD, kH, kW, oC, iC] always
Nd4jLong* biasShapeInfo = block.width() > 3 ? inputShape->at(2) : nullptr; // [oC]
Nd4jLong* gradOShapeInfo = block.width() > 3 ? inputShape->at(3) : inputShape->at(2); // [bS, oD, oH, oW, oC] (NDHWC) or [bS, oC, oD, oH, oW] (NCDHW), epsilon_next
const int rank = 5;
REQUIRE_TRUE(shape::rank(inputShapeInfo) == rank, 0, "CUSTOM DECONV3D_BP OP: rank of input array must be equal to %i, but got %i instead !", rank, shape::rank(inputShapeInfo));
REQUIRE_TRUE(shape::rank(weightsShapeInfo) == rank, 0, "CUSTOM DECONV3D_BP OP: rank of weights array must be equal to %i , but got %i instead !", rank, shape::rank(weightsShapeInfo));
REQUIRE_TRUE(shape::rank(gradOShapeInfo) == rank, 0, "CUSTOM DECONV3D_BP OP: rank of output gradients (next epsilon) array must be equal to %i, but got %i instead !", rank, shape::rank(gradOShapeInfo));
int kD = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast<int>(shape::sizeAt(weightsShapeInfo, 0));// filter(kernel) depth
int kH = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast<int>(shape::sizeAt(weightsShapeInfo, 1));// filter(kernel) height
int kW = INT_ARG(2) > 0 ? INT_ARG(2) : static_cast<int>(shape::sizeAt(weightsShapeInfo, 2));// filter(kernel) width
int sD = INT_ARG(3); // strides depth
int sH = INT_ARG(4); // strides height
int sW = INT_ARG(5); // strides width
int pD = INT_ARG(6); // paddings depth
int pH = INT_ARG(7); // paddings height
int pW = INT_ARG(8); // paddings width
int dD = INT_ARG(9); // dilations depth
int dH = INT_ARG(10); // dilations height
int dW = INT_ARG(11); // dilations width
int isSameMode = INT_ARG(12); // 0-SAME, 1-VALID
int isNCDHW = block.getIArguments()->size() > 13 ? !INT_ARG(13) : 1; // INT_ARG(13): 1-NDHWC, 0-NCDHW
int indIOioC, indIiD, indWoC(3);
if(!isNCDHW) {
indIOioC = 4; indIiD = 1;
}
else {
indIOioC = 1; indIiD = 2;
}
const int bS = inputShapeInfo[1]; // batch size
const int iD = inputShapeInfo[indIiD+1]; // input depth
const int iH = inputShapeInfo[indIiD+2]; // input height
const int iW = inputShapeInfo[indIiD+3]; // input width
const int iC = inputShapeInfo[indIOioC+1]; // input channels
const int oC = weightsShapeInfo[indWoC+1]; // output channels
int trueoD, trueoH, trueoW; // true output depth, height, width
ConvolutionUtils::calcOutSizeDeconv3D(trueoD, trueoH, trueoW, kD, kH, kW, sD, sH, sW, pD, pH, pW, dD, dH, dW, iD, iH, iW, isSameMode);
std::vector<Nd4jLong> expectedGradOShape = ShapeUtils::composeShapeUsingDimsAndIdx({bS,oC,trueoD,trueoH,trueoW, 0,indIOioC,indIiD,indIiD+1,indIiD+2});
std::vector<Nd4jLong> expectedWeightsShape = {kD, kH, kW, oC, iC};
REQUIRE_TRUE(shape::shapeEquals(5, expectedGradOShape.data(), shape::rank(gradOShapeInfo), shape::shapeOf(gradOShapeInfo)), 0, "CUSTOM DECONV3D_BP OP: wrong shape of output gradients next epsilon) array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedGradOShape).c_str(), ShapeUtils::shapeAsString(gradOShapeInfo).c_str());
REQUIRE_TRUE(shape::shapeEquals(5, expectedWeightsShape.data(), shape::rank(weightsShapeInfo), shape::shapeOf(weightsShapeInfo)), 0, "CUSTOM DECONV3D_BP OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weightsShapeInfo).c_str());
if(biasShapeInfo)
REQUIRE_TRUE(biasShapeInfo[0] <= 2 && oC == shape::length(biasShapeInfo), 0, "CUSTOM DECONV3D_BP OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, biasShapeInfo[0], shape::length(biasShapeInfo));
auto gradIShapeInfo = ShapeBuilders::copyShapeInfoAndType(inputShapeInfo, gradOShapeInfo, false, block.getWorkspace());
auto gradWShapeInfo = ShapeBuilders::copyShapeInfoAndType(weightsShapeInfo, gradOShapeInfo, false, block.getWorkspace());
auto shapes = SHAPELIST(CONSTANT(gradIShapeInfo), CONSTANT(gradWShapeInfo));
if (biasShapeInfo != nullptr) {
auto gradBShapeInfo = ShapeBuilders::copyShapeInfoAndType(biasShapeInfo, gradOShapeInfo, false, block.getWorkspace());
shapes->push_back(CONSTANT(gradBShapeInfo));
}
return shapes;
}
}
}
#endif