cavis/libnd4j/include/ops/declarable/helpers/cpu/hsv_rgb.cpp

90 lines
3.9 KiB
C++

/*******************************************************************************
* Copyright (c) 2019 Konduit K.K.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
#include <ops/declarable/helpers/adjust_hue.h>
#include <ops/declarable/helpers/color_models_conv.h>
#include <helpers/ConstantTadHelper.h>
#include <execution/Threads.h>
namespace nd4j {
namespace ops {
namespace helpers {
//local
template <typename T, typename Op>
FORCEINLINE static void triple_transformer(const NDArray* input, NDArray* output, const int dimC, Op op) {
const int rank = input->rankOf();
const T* x = input->bufferAsT<T>();
T* z = output->bufferAsT<T>();
if (dimC == rank - 1 && input->ews() == 1 && output->ews() == 1 && input->ordering() == 'c' && output->ordering() == 'c') {
auto func = PRAGMA_THREADS_FOR{
for (auto i = start; i < stop; i += increment) {
op(x[i], x[i + 1], x[i + 2], z[i], z[i + 1], z[i + 2]);
}
};
samediff::Threads::parallel_for(func, 0, input->lengthOf(), 3);
}
else {
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), dimC);
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), dimC);
const Nd4jLong numOfTads = packX.numberOfTads();
const Nd4jLong xDimCstride = input->stridesOf()[dimC];
const Nd4jLong zDimCstride = output->stridesOf()[dimC];
auto func = PRAGMA_THREADS_FOR{
for (auto i = start; i < stop; i += increment) {
const T* xTad = x + packX.platformOffsets()[i];
T* zTad = z + packZ.platformOffsets()[i];
op(xTad[0], xTad[xDimCstride], xTad[2 * xDimCstride], zTad[0], zTad[zDimCstride], zTad[2 * zDimCstride]);
}
};
samediff::Threads::parallel_tad(func, 0, numOfTads);
}
}
template <typename T>
FORCEINLINE static void hsv_rgb(const NDArray* input, NDArray* output, const int dimC) {
auto op = nd4j::ops::helpers::hsvToRgb<T>;
return triple_transformer<T>(input, output, dimC, op);
}
template <typename T>
FORCEINLINE static void rgb_hsv(const NDArray* input, NDArray* output, const int dimC) {
auto op = nd4j::ops::helpers::rgbToHsv<T>;
return triple_transformer<T>(input, output, dimC, op);
}
void transform_hsv_rgb(nd4j::LaunchContext* context, const NDArray* input, NDArray* output, const int dimC) {
BUILD_SINGLE_SELECTOR(input->dataType(), hsv_rgb, (input, output, dimC), FLOAT_TYPES);
}
void transform_rgb_hsv(nd4j::LaunchContext* context, const NDArray* input, NDArray* output, const int dimC) {
BUILD_SINGLE_SELECTOR(input->dataType(), rgb_hsv, (input, output, dimC), FLOAT_TYPES);
}
}
}
}