499 lines
19 KiB
C++
499 lines
19 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Yurii Shyrma (iuriish@yahoo.com)
|
|
// @author raver119@gmail.com
|
|
//
|
|
|
|
#include <ops/declarable/helpers/s_t_b.h>
|
|
#include <execution/Threads.h>
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
namespace helpers {
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template <typename T>
|
|
static void batchToSpace_(const NDArray& input, NDArray& output, const uint cropBottom, const uint cropTop, const uint cropLeft, const uint cropRight) {
|
|
|
|
// input [bS, H * blockSize, W * blockSize, iC]
|
|
// output [bS, H * blockSize - cropBottom - cropTop, W * blockSize - cropLeft - cropRight, iC]
|
|
|
|
// if (cropTop = cropBottom = cropRight = cropLeft = 0) shapes are the same
|
|
// else:
|
|
// oH -> [cropBottom, iH - cropTop]
|
|
// oW -> [cropLeft, iH - cropRight]
|
|
// xLen > zLen
|
|
|
|
const T* x = input.bufferAsT<T>();
|
|
T* z = output.bufferAsT<T>();
|
|
|
|
const int rank = 4;
|
|
|
|
const Nd4jLong* xShapeInfo = input.getShapeInfo();
|
|
const Nd4jLong* zShapeInfo = output.getShapeInfo();
|
|
|
|
const uint bS = xShapeInfo[1];
|
|
const uint iH = xShapeInfo[2];
|
|
const uint iW = xShapeInfo[3];
|
|
const uint iC = xShapeInfo[4];
|
|
|
|
// loop through output array
|
|
auto func = PRAGMA_THREADS_FOR_3D {
|
|
for (auto b = start_x; b < stop_x; b += inc_x) {
|
|
for (auto h = start_y; h < stop_y; h += inc_y) {
|
|
for (auto w = start_z; w < stop_z; w += inc_z) {
|
|
for (uint c = 0; c < iC; ++c) {
|
|
const Nd4jLong xOffset = b * xShapeInfo[5] + h * xShapeInfo[6] + w * xShapeInfo[7] + c * xShapeInfo[8];
|
|
const Nd4jLong zOffset = b * zShapeInfo[5] + (h - cropBottom) * zShapeInfo[6] + (w - cropLeft) * zShapeInfo[7] + c * zShapeInfo[8];
|
|
|
|
z[zOffset] = x[xOffset];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
sd::Threads::parallel_for(func, 0, bS, 1, cropBottom, iH - cropTop, 1, cropLeft, iW - cropRight, 1);
|
|
}
|
|
|
|
BUILD_SINGLE_TEMPLATE(template void batchToSpace_, (const NDArray& input, NDArray& output, const uint cropBottom, const uint cropTop, const uint cropLeft, const uint cropRight), LIBND4J_TYPES);
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
void batchToSpace(sd::LaunchContext* context, const NDArray& input, NDArray& output, const uint cropBottom, const uint cropTop, const uint cropLeft, const uint cropRight, const uint blockSize) {
|
|
|
|
// [bS*blockSize*blockSize, H/blockSize, W/blockSize, iC] is rearranged/permuted to [bS, oH, oW, iC]
|
|
// oH = H - cropTop - cropBottom
|
|
// oW = W - cropLeft - cropRight
|
|
|
|
NDArray inputRearranged0 = input.reshape(input.ordering(), {blockSize, blockSize, output.sizeAt(0), input.sizeAt(1), input.sizeAt(2), input.sizeAt(3)});
|
|
inputRearranged0.permutei({2, 3,0, 4,1, 5});
|
|
|
|
if(input.lengthOf() == output.lengthOf())
|
|
output.assign(inputRearranged0);
|
|
else {
|
|
NDArray inputRearranged1 = inputRearranged0.reshape(input.ordering(), {output.sizeAt(0), input.sizeAt(1) * blockSize, input.sizeAt(2) * blockSize, input.sizeAt(3)});
|
|
BUILD_SINGLE_SELECTOR(input.dataType(), batchToSpace_, (inputRearranged1, output, cropBottom, cropTop, cropLeft, cropRight), LIBND4J_TYPES);
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template <typename T>
|
|
static void batchToSpaceND_(const NDArray& input, const NDArray& crop, NDArray& output, const uint numOfSpatialDims) {
|
|
|
|
// input [bS, H * blockShape[0], W * blockShape[1], iC]
|
|
// output [bS, H * blockShape[0] - cropBottom - cropTop, W * blockShape[1] - cropLeft - cropRight, iC]
|
|
|
|
// if (cropTop = cropBottom = cropRight = cropLeft = 0) shapes are the same
|
|
// else:
|
|
// oH -> [cropBottom, iH - cropTop]
|
|
// oW -> [cropLeft, iH - cropRight]
|
|
// xLen >= zLen
|
|
|
|
const T* x = input.bufferAsT<T>();
|
|
T* z = output.bufferAsT<T>();
|
|
|
|
const int rank = input.rankOf();
|
|
const Nd4jLong zLen = output.lengthOf();
|
|
|
|
// loop through input array
|
|
auto func = PRAGMA_THREADS_FOR {
|
|
Nd4jLong coords[MAX_RANK];
|
|
for (auto i = start; i < stop; i++) {
|
|
|
|
shape::index2coords(i, output.getShapeInfo(), coords);
|
|
|
|
const auto zOffset = shape::getOffset(output.getShapeInfo(), coords);
|
|
|
|
// evaluate spatial coordinates for x
|
|
for (uint j = 1; j <= numOfSpatialDims; ++j)
|
|
coords[j] += crop.e<uint>(j - 1, 0); // add crop left
|
|
|
|
z[zOffset] = x[shape::getOffset(input.getShapeInfo(), coords)];
|
|
}
|
|
};
|
|
|
|
sd::Threads::parallel_tad(func, 0, zLen);
|
|
}
|
|
|
|
BUILD_SINGLE_TEMPLATE(template void batchToSpaceND_, (const NDArray& input, const NDArray& crop, NDArray& output, const uint numOfSpatialDims), LIBND4J_TYPES);
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
void batchToSpaceND(sd::LaunchContext* context, const NDArray& input, const NDArray& blockShape, const NDArray& crop, NDArray& output) {
|
|
|
|
// 4D example, numOfSpatialDims = 2 - two spatial dimensions
|
|
// [bS*blockShape[0]*blockShape[1], iH, iW, iC] is rearranged/permuted to [bS, iH*blockShape[0] - cropTop - cropBottom, iW*blockShape[1] - cropLeft - cropRight, iC]
|
|
|
|
const uint rank = input.rankOf();
|
|
const uint numOfSpatialDims = blockShape.sizeAt(0);
|
|
|
|
//*** construct reshaping std::vector for first reshape of input array ***//
|
|
|
|
std::vector<Nd4jLong> temp(numOfSpatialDims + rank);
|
|
|
|
uint i;
|
|
for(i = 0; i < numOfSpatialDims; ++i)
|
|
temp[i] = blockShape.e<Nd4jLong>(i);
|
|
temp[i++] = output.sizeAt(0);
|
|
for(uint j = 1; j < rank; ++i, ++j)
|
|
temp[i] = input.sizeAt(j);
|
|
|
|
NDArray inputRearranged0 = input.reshape(input.ordering(), temp);
|
|
|
|
//*** construct permuting std::vector for permutation of input array ***//
|
|
|
|
temp[0] = numOfSpatialDims;
|
|
|
|
for(i = 1; i <= numOfSpatialDims; ++i) {
|
|
temp[2*i - 1] = numOfSpatialDims + i;
|
|
temp[2*i] = i - 1;
|
|
}
|
|
for(i = 2 * numOfSpatialDims + 1; i < static_cast<uint>(temp.size()); ++i)
|
|
temp[i] = i;
|
|
|
|
inputRearranged0.permutei(temp);
|
|
|
|
|
|
if(input.lengthOf() == output.lengthOf()) {
|
|
output.assign(inputRearranged0);
|
|
}
|
|
else {
|
|
//*** construct reshaping std::vector for second reshape of input array ***//
|
|
|
|
temp.resize(rank);
|
|
|
|
temp[0] = output.sizeAt(0);
|
|
|
|
for(i = 1; i < rank; ++i)
|
|
temp[i] = (i <= numOfSpatialDims) ? input.sizeAt(i) * blockShape.e<Nd4jLong>(i - 1) : input.sizeAt(i);
|
|
|
|
NDArray inputRearranged1 = inputRearranged0.reshape(input.ordering(), temp);
|
|
|
|
BUILD_SINGLE_SELECTOR(input.dataType(), batchToSpaceND_, (inputRearranged1, crop, output, numOfSpatialDims), LIBND4J_TYPES);
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template <typename T>
|
|
static void spaceToBatch_(const NDArray& input, NDArray& output, const uint padBottom, const uint padTop, const uint padLeft, const uint padRight) {
|
|
|
|
// input [bS, H * blockSize - padBottom - padTop, W * blockSize - padLeft - padRight, iC]
|
|
// output [bS, H * blockSize, W * blockSize, iC]
|
|
|
|
// if (padTop = padBottom = padRight = padLeft = 0) shapes are the same
|
|
// else:
|
|
// iH -> [padBottom, oH - padTop]
|
|
// iW -> [padLeft, oW - padRight]
|
|
// zLen > xLen
|
|
|
|
const T* x = input.bufferAsT<T>();
|
|
T* z = output.bufferAsT<T>();
|
|
|
|
const int rank = 4;
|
|
|
|
const Nd4jLong* xShapeInfo = input.getShapeInfo();
|
|
const Nd4jLong* zShapeInfo = output.getShapeInfo();
|
|
|
|
const uint bS = zShapeInfo[1];
|
|
const uint oH = zShapeInfo[2];
|
|
const uint oW = zShapeInfo[3];
|
|
const uint iC = zShapeInfo[4];
|
|
|
|
// loop through output array
|
|
auto func = PRAGMA_THREADS_FOR_2D {
|
|
for (auto b = start_x; b < stop_x; b += inc_x) {
|
|
for (auto h = start_y; h < stop_y; h += inc_y) {
|
|
for (uint w = 0; w < oW; ++w) {
|
|
for (uint c = 0; c < iC; ++c) {
|
|
|
|
const Nd4jLong zOffset = b * zShapeInfo[5] + h * zShapeInfo[6] + w * zShapeInfo[7] + c * zShapeInfo[8];
|
|
|
|
if (h >= padBottom && h < oH - padTop && w >= padLeft && w < oW - padRight) {
|
|
const Nd4jLong xOffset = b * xShapeInfo[5] + (h - padBottom) * xShapeInfo[6] + (w - padLeft) * xShapeInfo[7] + c * xShapeInfo[8];
|
|
z[zOffset] = x[xOffset];
|
|
} else
|
|
z[zOffset] = 0.f;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
sd::Threads::parallel_for(func, 0, bS, 1, 0, oH, 1);
|
|
}
|
|
|
|
BUILD_SINGLE_TEMPLATE(template void spaceToBatch_, (const NDArray& input, NDArray& output, const uint padBottom, const uint padTop, const uint padLeft, const uint padRight), LIBND4J_TYPES);
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
void spaceToBatch(sd::LaunchContext* context, const NDArray& input, NDArray& output, const uint padBottom, const uint padTop, const uint padLeft, const uint padRight, const uint blockSize) {
|
|
|
|
// [bS, iH, iW, iC] is rearranged/permuted to [bS*blockSize*blockSize, (iH + padBottom + padTop)/blockSize, (iW + padLeft + padRight)/blockSize, iC]
|
|
|
|
NDArray outputRearranged0 = output.reshape(output.ordering(), {blockSize, blockSize, input.sizeAt(0), output.sizeAt(1), output.sizeAt(2), output.sizeAt(3)}, false);
|
|
outputRearranged0.permutei({2, 3,0, 4,1, 5});
|
|
|
|
if(input.lengthOf() == output.lengthOf()) {
|
|
outputRearranged0.assign(input);
|
|
}
|
|
else {
|
|
NDArray outputRearranged1 = outputRearranged0.reshape(output.ordering(), {input.sizeAt(0), output.sizeAt(1) * blockSize, output.sizeAt(2) * blockSize, output.sizeAt(3)}, false);
|
|
BUILD_SINGLE_SELECTOR(input.dataType(), spaceToBatch_, (input, outputRearranged1, padBottom, padTop, padLeft, padRight), LIBND4J_TYPES);
|
|
|
|
if(output.getBuffer() != outputRearranged1.getBuffer())
|
|
outputRearranged0.assign(outputRearranged1);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template <typename T>
|
|
static void spaceToBatchND_(const NDArray& input, const NDArray& padding, NDArray& output, const uint numOfSpatialDims) {
|
|
|
|
// 4D example
|
|
// input [bS, H * blockShape[0] - padBottom - padTop, W * blockShape[1] - padLeft - padRight, iC]
|
|
// output [bS, H * blockShape[0], W * blockShape[1], iC]
|
|
|
|
// if (padTop = padBottom = padRight = padLeft = 0) shapes are the same
|
|
// else:
|
|
// iH -> [padBottom, oH - padTop]
|
|
// iW -> [padLeft, oW - padRight]
|
|
// zLen > xLen
|
|
|
|
const T* x = input.bufferAsT<T>();
|
|
T* z = output.bufferAsT<T>();
|
|
|
|
const int rank = input.rankOf();
|
|
const Nd4jLong zLen = output.lengthOf();
|
|
|
|
// loop through output array
|
|
auto func = PRAGMA_THREADS_FOR {
|
|
Nd4jLong coords[MAX_RANK];
|
|
for (auto i = start; i < stop; i++) {
|
|
shape::index2coords(i, output.getShapeInfo(), coords);
|
|
|
|
const auto zOffset = shape::getOffset(output.getShapeInfo(), coords);
|
|
|
|
bool within = true;
|
|
|
|
for (uint j = 1; j <= numOfSpatialDims; ++j) {
|
|
|
|
const auto padLeft = padding.e<uint>(j - 1, 0);
|
|
const auto padRight = padding.e<uint>(j - 1, 1);
|
|
|
|
within &= (coords[j] >= padLeft && coords[j] < output.sizeAt(j) - padRight);
|
|
|
|
if (!within)
|
|
break;
|
|
|
|
coords[j] -= padLeft; // get coordinates for x
|
|
}
|
|
|
|
if (within)
|
|
z[zOffset] = x[shape::getOffset(input.getShapeInfo(), coords)];
|
|
else
|
|
z[zOffset] = 0.f;
|
|
}
|
|
};
|
|
|
|
sd::Threads::parallel_tad(func, 0, zLen);
|
|
}
|
|
|
|
BUILD_SINGLE_TEMPLATE(template void spaceToBatchND_, (const NDArray& input, const NDArray& padding, NDArray& output, const uint numOfSpatialDims), LIBND4J_TYPES);
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
void spaceToBatchND(sd::LaunchContext* context, const NDArray& input, const NDArray& blockShape, const NDArray& padding, NDArray& output ) {
|
|
|
|
// 4D example with two spatial dimensions
|
|
// [bS, iH, iW, iC] is rearranged/permuted to [bS*blockShape[0]*blockShape[1], (iH + padBottom + padTop)/blockShape[0], (iW + padLeft + padRight)/blockShape[1], iC]
|
|
|
|
const uint rank = input.rankOf();
|
|
|
|
const uint numOfSpatialDims = blockShape.sizeAt(0);
|
|
|
|
//*** construct reshaping std::vector for first reshape of output array ***//
|
|
std::vector<Nd4jLong> temp(numOfSpatialDims + rank);
|
|
|
|
int i;
|
|
for(i = 0; i < numOfSpatialDims; ++i)
|
|
temp[i] = blockShape.e<Nd4jLong>(i);
|
|
temp[i++] = input.sizeAt(0);
|
|
for(int j = 1; j < rank; ++i, ++j)
|
|
temp[i] = output.sizeAt(j);
|
|
|
|
NDArray outputRearranged0 = output.reshape(output.ordering(), temp, false);
|
|
|
|
//*** construct permuting std::vector for permutation of output array ***//
|
|
|
|
temp[0] = numOfSpatialDims;
|
|
|
|
for(i = 1; i <= numOfSpatialDims; ++i) {
|
|
temp[2*i - 1] = numOfSpatialDims + i;
|
|
temp[2*i] = i - 1;
|
|
}
|
|
for(i = 2 * numOfSpatialDims + 1; i < temp.size(); ++i)
|
|
temp[i] = i;
|
|
|
|
outputRearranged0.permutei(temp);
|
|
|
|
// ****** //
|
|
|
|
if(input.lengthOf() == output.lengthOf()) {
|
|
outputRearranged0.assign(input);
|
|
}
|
|
else {
|
|
|
|
//*** construct reshaping std::vector for second reshape of output array ***//
|
|
temp.resize(rank);
|
|
|
|
temp[0] = input.sizeAt(0);
|
|
|
|
for(i = 1; i < rank; ++i)
|
|
temp[i] = (i <= numOfSpatialDims) ? output.sizeAt(i) * blockShape.e<Nd4jLong>(i - 1) : output.sizeAt(i);
|
|
|
|
NDArray outputRearranged1 = outputRearranged0.reshape(output.ordering(), temp, false);
|
|
|
|
BUILD_SINGLE_SELECTOR(input.dataType(), spaceToBatchND_, (input, padding, outputRearranged1, numOfSpatialDims), LIBND4J_TYPES);
|
|
|
|
if(output.getBuffer() != outputRearranged1.getBuffer())
|
|
outputRearranged0.assign(outputRearranged1);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
template <int N, bool B2S>
|
|
struct SpaceToBatchHelper {
|
|
template <typename T>
|
|
static void run(T *ptrSpace, const Nd4jLong *space_shape, const Nd4jLong *space_strides, const Nd4jLong *block_shape, const Nd4jLong *pad_start, const Nd4jLong *block_offsets, T *ptrBatch, const Nd4jLong *batch_shape, const Nd4jLong *batch_strides) {
|
|
for (int batch_pos = 0; batch_pos < batch_shape[0]; ++batch_pos) {
|
|
const int space_pos = batch_pos * block_shape[0] + block_offsets[0] - pad_start[0];
|
|
if (space_pos >= 0 && space_pos < space_shape[0]) {
|
|
SpaceToBatchHelper<N - 1, B2S>::run(ptrSpace + space_pos * space_strides[0], space_shape + 1, space_strides + 1, block_shape + 1, pad_start + 1, block_offsets + 1, ptrBatch, batch_shape + 1, batch_strides + 1);
|
|
} else {
|
|
if (!B2S)
|
|
for (int i = 0; i < batch_strides[0]; i++)
|
|
ptrBatch[i] = (T) 0.f;
|
|
}
|
|
|
|
ptrBatch += batch_strides[0];
|
|
}
|
|
}
|
|
};
|
|
|
|
template <bool B2S>
|
|
struct SpaceToBatchHelper<0, B2S> {
|
|
template <typename T>
|
|
static void run(T *ptrSpace, const Nd4jLong *space_shape, const Nd4jLong *space_strides, const Nd4jLong *block_shape, const Nd4jLong *pad_start, const Nd4jLong *block_offsets, T *ptrBatch, const Nd4jLong *batch_shape, const Nd4jLong *batch_strides) {
|
|
int str = batch_strides[-1];
|
|
for (int i = 0; i < str; i++)
|
|
if (B2S)
|
|
ptrSpace[i] = ptrBatch[i];
|
|
else
|
|
ptrBatch[i] = ptrSpace[i];
|
|
}
|
|
};
|
|
|
|
template <typename T, int NUM_BLOCK_DIMS, bool B2S>
|
|
void _execute(sd::LaunchContext * context, void *vptrSpace, const Nd4jLong *space_shape, const Nd4jLong *space_strides, const Nd4jLong *block_shape, const Nd4jLong *pad_start, const Nd4jLong *block_offsets, void *vptrBatch, const Nd4jLong *batch_shape, const Nd4jLong *batch_strides) {
|
|
auto ptrSpace = reinterpret_cast<T *>(vptrSpace);
|
|
auto ptrBatch = reinterpret_cast<T *>(vptrBatch);
|
|
SpaceToBatchHelper<NUM_BLOCK_DIMS, B2S>::run(ptrSpace, space_shape, space_strides, block_shape, pad_start, block_offsets, ptrBatch, batch_shape, batch_strides);
|
|
};
|
|
|
|
Nd4jStatus _spaceToBatch(sd::LaunchContext * context, int internal_block_dims, NDArray *input, NDArray *output, std::vector<Nd4jLong> &internal_input_shape, std::vector<Nd4jLong> &internal_output_shape, Nd4jLong *block_shape, Nd4jLong *paddings) {
|
|
auto in = input->reshape('c', internal_input_shape);
|
|
auto out = output->reshape('c', internal_output_shape);
|
|
switch (internal_block_dims) {
|
|
case 1:
|
|
_prepare<1, false>(context, &in, &out, block_shape, paddings);
|
|
break;
|
|
case 2:
|
|
_prepare<2, false>(context, &in, &out, block_shape, paddings);
|
|
break;
|
|
case 3:
|
|
_prepare<3, false>(context, &in, &out, block_shape, paddings);
|
|
break;
|
|
case 4:
|
|
_prepare<4, false>(context, &in, &out, block_shape, paddings);
|
|
break;
|
|
default: {
|
|
return Status::THROW("SpaceToBatch: Wrong number of internal_block_dims");
|
|
}
|
|
}
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
Nd4jStatus _batchToSpace(sd::LaunchContext * context, int internal_block_dims, NDArray *input, NDArray *output, std::vector<Nd4jLong> &internal_input_shape, std::vector<Nd4jLong> &internal_output_shape, Nd4jLong *block_shape, Nd4jLong *crops) {
|
|
auto in = input->reshape('c', internal_input_shape);
|
|
auto out = output->reshape('c', internal_output_shape);
|
|
switch (internal_block_dims) {
|
|
case 1:
|
|
_prepare<1, true>(context, &in, &out, block_shape, crops);
|
|
break;
|
|
case 2:
|
|
_prepare<2, true>(context, &in, &out, block_shape, crops);
|
|
break;
|
|
case 3:
|
|
_prepare<3, true>(context, &in, &out, block_shape, crops);
|
|
break;
|
|
case 4:
|
|
_prepare<4, true>(context, &in, &out, block_shape, crops);
|
|
break;
|
|
default: {
|
|
return Status::THROW("BatchToSpace: Wrong number of internal_block_dims");
|
|
}
|
|
}
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
#define STB_DIM (0, 1),\
|
|
(1, 2),\
|
|
(2, 3),\
|
|
(3, 4)
|
|
|
|
#define STB_BOOL (0, false),\
|
|
(1, true)
|
|
|
|
BUILD_TRIPLE_TEMPLATE(template void _execute, (sd::LaunchContext * context, void *ptrSpace, const Nd4jLong *space_shape, const Nd4jLong *space_strides, const Nd4jLong *block_shape, const Nd4jLong *pad_start, const Nd4jLong *block_offsets, void *ptrBatch, const Nd4jLong *batch_shape, const Nd4jLong *batch_strides), LIBND4J_TYPES, STB_DIM, STB_BOOL);
|
|
|
|
#undef STB_BOOL
|
|
#undef STB_DIM
|
|
*/
|
|
|
|
}
|
|
}
|
|
} |