cavis/libnd4j/include/ops/declarable/helpers/cpu/lrn.cpp

333 lines
15 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
// @author Yurii Shyrma (iuriish@yahoo.com)
//
#include <ops/declarable/helpers/lrn.h>
#include <graph/Status.h>
#include <helpers/ConstantTadHelper.h>
#include <execution/Threads.h>
namespace sd {
namespace ops {
namespace helpers {
template <typename T>
static int lrnFunctor_(sd::graph::Context& block, NDArray* input, NDArray* output, int depth, float bias, float alpha, float beta) {
nd4j_debug("MKL-DNN is not used for lrn!\n", 0);
const int rank = input->rankOf();
TadPack inTadPack = sd::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), {rank - 1});
TadPack outTadPack;
if(shape::haveSameShapeAndStrides(input->getShapeInfo(), output->getShapeInfo()))
outTadPack = inTadPack;
else
outTadPack = sd::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), {rank - 1});
const Nd4jLong numOfTads = inTadPack.numberOfTads();
const Nd4jLong tadLen = input->sizeAt(-1);
const Nd4jLong* inTadOffsets = inTadPack.primaryOffsets();
const Nd4jLong* outTadOffsets = outTadPack.primaryOffsets();
const Nd4jLong inTadEws = shape::elementWiseStride(inTadPack.primaryShapeInfo());
const Nd4jLong outTadEws = shape::elementWiseStride(outTadPack.primaryShapeInfo());
const T* inBuff = reinterpret_cast<T*>(input->getBuffer());
T* outBuff = reinterpret_cast<T*>(output->getBuffer());
const T tbias = static_cast<T>(bias);
const T tbeta = static_cast<T>(beta);
const T talpha = static_cast<T>(alpha);
if(inTadEws == 1 && outTadEws == 1) {
auto func = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; i++) {
const T *x = inBuff + inTadOffsets[i];
T *y = outBuff + outTadOffsets[i];
T prev = 0;
// calculate squared sum of elements per each j-th element range [j - depth, j + depth + 1]
// we store each squared sum in corresponding element of y array
for (Nd4jLong j = 0; j < tadLen; ++j) {
const uint begin = sd::math::nd4j_max<int>(0, j - depth);
const uint last = depth + j + 1;
const uint end = sd::math::nd4j_min<int>(last, tadLen);
if (j == 0) {
for (uint s = begin; s < end; ++s)
prev = prev + x[s] * x[s];
y[j] = prev;
} else if (begin == 0 && last <= tadLen)
y[j] = prev + x[end - 1] * x[end - 1];
else if (begin > 0 && last <= tadLen)
y[j] = prev + x[end - 1] * x[end - 1] - x[begin - 1] * x[begin - 1];
else if (begin > 0 && last > tadLen)
y[j] = prev - x[begin - 1] * x[begin - 1];
else
y[j] = prev;
if (j != 0)
prev = y[j];
y[j] = x[j] / sd::math::nd4j_pow<T, T, T>(tbias + alpha * prev, tbeta);
}
}
};
sd::Threads::parallel_tad(func, 0, numOfTads);
}
else {
auto func = PRAGMA_THREADS_FOR {
for (Nd4jLong i = 0; i < numOfTads; ++i) {
const T *x = inBuff + inTadOffsets[i];
T *y = outBuff + outTadOffsets[i];
T prev = 0;
// calculate squared sum of elements per each j-th element range [j - depth, j + depth + 1]
// we store each squared sum in corresponding element of y array
for (Nd4jLong j = 0; j < tadLen; ++j) {
const uint begin = sd::math::nd4j_max<int>(0, j - depth);
const uint last = depth + j + 1;
const uint end = sd::math::nd4j_min<int>(last, tadLen);
if (j == 0) {
for (uint s = begin; s < end; ++s)
prev = prev + x[s * inTadEws] * x[s * inTadEws];
y[j * outTadEws] = prev;
} else if (begin == 0 && last <= tadLen)
y[j * outTadEws] = prev + x[(end - 1) * inTadEws] * x[(end - 1) * inTadEws];
else if (begin > 0 && last <= tadLen)
y[j * outTadEws] = prev + x[(end - 1) * inTadEws] * x[(end - 1) * inTadEws] - x[(begin - 1) * inTadEws] * x[(begin - 1) * inTadEws];
else if (begin > 0 && last > tadLen)
y[j * outTadEws] = prev - x[(begin - 1) * inTadEws] * x[(begin - 1) * inTadEws];
else
y[j * outTadEws] = prev;
if (j != 0)
prev = y[j * outTadEws];
y[j * outTadEws] = x[j * inTadEws] / sd::math::nd4j_pow<T, T, T>(tbias + alpha * prev, tbeta);
}
}
};
sd::Threads::parallel_tad(func, 0, numOfTads);
}
return Status::OK();
}
BUILD_SINGLE_TEMPLATE(template int lrnFunctor_, (sd::graph::Context& block, NDArray* input, NDArray* output, int depth, float bias, float alpha, float beta), FLOAT_TYPES);
int lrnFunctor(sd::graph::Context& block, NDArray* input, NDArray* output, int depth, double bias, double alpha, double beta) {
BUILD_SINGLE_SELECTOR(input->dataType(), return lrnFunctor_, (block, input, output, depth, bias, alpha, beta), FLOAT_TYPES);
}
//////////////////////////////////////////////////////////////////////////
template <typename X, typename Y>
static void lrnBP_(const NDArray& input, const NDArray& gradO, NDArray& gradI, const int depth, const float bias, const float alpha, const float beta) {
const int rank = input.rankOf();
TadPack inTadPack = sd::ConstantTadHelper::getInstance()->tadForDimensions(input.getShapeInfo(), {rank - 1});
TadPack gradITadPack;
if(shape::haveSameShapeAndStrides(input.getShapeInfo(), gradI.getShapeInfo()))
gradITadPack = inTadPack;
else
gradITadPack = sd::ConstantTadHelper::getInstance()->tadForDimensions(gradI.getShapeInfo(), {rank - 1});
const Nd4jLong numOfTads = inTadPack.numberOfTads();
const Nd4jLong tadLen = input.sizeAt(-1);
const Nd4jLong* inTadOffsets = inTadPack.primaryOffsets();
const Nd4jLong* gradITadOffsets = gradITadPack.primaryOffsets();
const Nd4jLong inTadEws = shape::elementWiseStride(inTadPack.primaryShapeInfo());
const Nd4jLong gradITadEws = shape::elementWiseStride(gradITadPack.primaryShapeInfo());
const X* inBuff = reinterpret_cast<X*>(input.getBuffer());
Y* gradIBuff = reinterpret_cast<Y*>(gradI.getBuffer());
const Y tbias = static_cast<Y>(bias);
const Y tbeta = static_cast<Y>(beta);
const Y talpha = static_cast<Y>(alpha);
const Y coeff = talpha * tbeta;
if(inTadEws == 1 && gradITadEws == 1) {
auto func = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; i++) {
const X *x = inBuff + inTadOffsets[i];
Y *y = gradIBuff + gradITadOffsets[i];
// this loop calculates squared sum of elements per each j-th element range [j - depth, j + depth + 1]
// we store each squared sum in corresponding element of y array
for (Nd4jLong j = 0; j < tadLen; ++j) {
const uint begin = sd::math::nd4j_max<int>(0, j - depth);
const uint last = depth + j + 1;
const uint end = sd::math::nd4j_min<int>(last, tadLen);
if (j == 0) {
y[0] = 0;
for (uint s = begin; s < end; ++s)
y[0] = y[0] + x[s] * x[s];
} else if (begin == 0 && last <= tadLen)
y[j] = y[j - 1] + x[end - 1] * x[end - 1];
else if (begin > 0 && last <= tadLen)
y[j] = y[j - 1] + x[end - 1] * x[end - 1] - x[begin - 1] * x[begin - 1];
else if (begin > 0 && last > tadLen)
y[j] = y[j - 1] - x[begin - 1] * x[begin - 1];
else
y[j] = y[j - 1];
}
Y *factor = new Y[tadLen];
Y prev = 0;
// second loop calculates derivatives using information gained in first loop above
for (Nd4jLong j = 0; j < tadLen; ++j) {
const uint begin = sd::math::nd4j_max<int>(0, j - depth);
const uint last = depth + j + 1;
const uint end = sd::math::nd4j_min<int>(last, tadLen);
Y init = tbias + talpha * y[j];
if (j == 0) {
for (uint s = begin; s < end; ++s) {
factor[s] = sd::math::nd4j_pow<Y, Y, Y>(tbias + talpha * y[s], -tbeta - 1);
prev = prev + x[s] * factor[s];
}
y[0] = prev;
} else if (begin == 0 && last <= tadLen) {
factor[end - 1] = sd::math::nd4j_pow<Y, Y, Y>(tbias + talpha * y[end - 1], -tbeta - 1);
y[j] = prev + x[end - 1] * factor[end - 1];
} else if (begin > 0 && last <= tadLen) {
factor[end - 1] = sd::math::nd4j_pow<Y, Y, Y>(tbias + talpha * y[end - 1], -tbeta - 1);
y[j] = prev + x[end - 1] * factor[end - 1] - x[begin - 1] * factor[begin - 1];
} else if (begin > 0 && last > tadLen)
y[j] = prev - x[begin - 1] * factor[begin - 1];
else
y[j] = prev;
if (j != 0)
prev = y[j];
y[j] = factor[j] * init - 2 * x[j] * coeff * prev;
}
delete[]factor;
}
};
sd::Threads::parallel_tad(func, 0, numOfTads);
}
else {
auto func = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; i++) {
const X *x = inBuff + inTadOffsets[i];
Y *y = gradIBuff + gradITadOffsets[i];
// this loop calculates squared sum of elements per each j-th element range [j - depth, j + depth + 1]
// we store each squared sum in corresponding element of y array
for (Nd4jLong j = 0; j < tadLen; ++j) {
const uint begin = sd::math::nd4j_max<int>(0, j - depth);
const uint last = depth + j + 1;
const uint end = sd::math::nd4j_min<int>(last, tadLen);
if (j == 0) {
y[0] = 0;
for (uint s = begin; s < end; ++s)
y[0] = y[0] + x[s * inTadEws] * x[s * inTadEws];
} else if (begin == 0 && last <= tadLen)
y[j * gradITadEws] =
y[(j - 1) * gradITadEws] + x[(end - 1) * inTadEws] * x[(end - 1) * inTadEws];
else if (begin > 0 && last <= tadLen)
y[j * gradITadEws] =
y[(j - 1) * gradITadEws] + x[(end - 1) * inTadEws] * x[(end - 1) * inTadEws] -
x[(begin - 1) * inTadEws] * x[(begin - 1) * inTadEws];
else if (begin > 0 && last > tadLen)
y[j * gradITadEws] =
y[(j - 1) * gradITadEws] - x[(begin - 1) * inTadEws] * x[(begin - 1) * inTadEws];
else
y[j * gradITadEws] = y[(j - 1) * gradITadEws];
}
Y *factor = new Y[tadLen];
Y prev = 0;
// second loop calculates derivatives using information gained in first loop above
for (Nd4jLong j = 0; j < tadLen; ++j) {
const uint begin = sd::math::nd4j_max<int>(0, j - depth);
const uint last = depth + j + 1;
const uint end = sd::math::nd4j_min<int>(last, tadLen);
Y init = tbias + talpha * y[j * gradITadEws];
if (j == 0) {
for (uint s = begin; s < end; ++s) {
factor[s] = sd::math::nd4j_pow<Y, Y, Y>(tbias + talpha * y[s * gradITadEws], -tbeta - 1);
prev = prev + x[s * inTadEws] * factor[s];
}
y[0] = prev;
} else if (begin == 0 && last <= tadLen) {
factor[end - 1] = sd::math::nd4j_pow<Y, Y, Y>(tbias + talpha * y[(end - 1) * gradITadEws],
-tbeta - 1);
y[j * gradITadEws] = prev + x[(end - 1) * inTadEws] * factor[end - 1];
} else if (begin > 0 && last <= tadLen) {
factor[end - 1] = sd::math::nd4j_pow<Y, Y, Y>(tbias + talpha * y[(end - 1) * gradITadEws],
-tbeta - 1);
y[j * gradITadEws] = prev + x[(end - 1) * inTadEws] * factor[end - 1] -
x[(begin - 1) * inTadEws] * factor[begin - 1];
} else if (begin > 0 && last > tadLen)
y[j * gradITadEws] = prev - x[(begin - 1) * inTadEws] * factor[begin - 1];
else
y[j * gradITadEws] = prev;
if (j != 0)
prev = y[j * gradITadEws];
y[j * gradITadEws] = factor[j] * init - 2 * x[j * inTadEws] * coeff * prev;
}
delete[]factor;
}
};
sd::Threads::parallel_tad(func, 0, numOfTads);
}
gradI *= gradO;
}
void lrnBP(sd::graph::Context& block, const NDArray& input, const NDArray& gradO, NDArray& gradI, const int depth, const float bias, const float alpha, const float beta) {
BUILD_DOUBLE_SELECTOR(input.dataType(), gradO.dataType(), lrnBP_, (input, gradO, gradI, depth, bias, alpha, beta), FLOAT_TYPES, FLOAT_TYPES);
}
}
}
}