raver119 53ca9a76e8
[WIP] multi-device support (#80)
* fix pad javadoc and @see links. (#72)

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* [WIP] More fixes (#73)

* special tests for ConstantTadHelper/ConstantShapeHelper

Signed-off-by: raver119 <raver119@gmail.com>

* release methods for data buffers

Signed-off-by: raver119 <raver119@gmail.com>

* delete temporary buffer Java side

Signed-off-by: raver119 <raver119@gmail.com>

* delete temporary buffer Java side

Signed-off-by: raver119 <raver119@gmail.com>

* delete temporary TadPack C++/Java side (#74)

Signed-off-by: raver119 <raver119@gmail.com>

* Zoo model TF import test updates (#75)

* argLine fix, update compression_gru comment

* updated comment for xception

* undid but commented argLine change

* updated xlnet comment

* copyright headers

* - new NDArray methods like()/ulike() (#77)

- fix for depthwise_conv2d_bp + special test

Signed-off-by: raver119 <raver119@gmail.com>

* upsampling2d fix CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* DL4J trace logging (#79)

* MLN/CG trace logging for debugging

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Tiny tweak

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* strided_slice_bp shape fn leak fix

Signed-off-by: raver119 <raver119@gmail.com>

* SameDiff fixes and naming (#78)

* remove SDVariable inplace methods

* import methods

* npe fix in OpVal

* removed SameDiff inplace ops from tests

* Naming updates, moved to centralized methods in SameDiff, should use op_#:# for everything

* quick fixes

* javadoc

* SDVariable eval with placeholders

* use regex match

* better matching

* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* fix javadoc. (#76)

* fix javadoc.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* replace most @see with @link s.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* 4 additional tests

Signed-off-by: raver119 <raver119@gmail.com>

* launch context reorganization

Signed-off-by: raver119 <raver119@gmail.com>

* LaunchContext reorganization

Signed-off-by: raver119 <raver119@gmail.com>

* per-device LaunchContext

Signed-off-by: raver119 <raver119@gmail.com>

* Various DL4J/ND4J fixes (#81)

* #7954 Force refresh of UI when switching tabs on overview page

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8017 Concurrent modification exception (synchronize) fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8033 Don't initialize updater in middle of writing memory crash dump

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8208 Fix shape checks for ND4J int[] creator methods

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #6385 #7992 Keras import naming fixes + cleanup

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8016 Upsampling3D - add NDHWC format support

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* ContextBuffers as separate entity

Signed-off-by: raver119 <raver119@gmail.com>

* Refactor NativeOps.h to export C functions

* Actually export functions from NativeOps.h

* Adapt the Java wrappers in ND4J generated with JavaCPP

* Create C wrappers for some of the C++ classes currently used by ND4J

* ContextBuffers as separate entity

Signed-off-by: raver119 <raver119@gmail.com>

* remove duplicate code in createBufferDetached. (#83)

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* Keras model import - updater lr fix (#84)

* Keras model import - updater lr fix

Signed-off-by: eraly <susan.eraly@gmail.com>

* Keras model import - updater lr fix, cleanup

Signed-off-by: eraly <susan.eraly@gmail.com>

* ContextBuffers as separate entity

Signed-off-by: raver119 <raver119@gmail.com>

* ContextBuffers as separate entity

Signed-off-by: raver119 <raver119@gmail.com>

* Fix functions of OpaqueVariablesSet

* thread-local buffers/affinity

Signed-off-by: raver119 <raver119@gmail.com>

* thread safety for LaunchContext

Signed-off-by: raver119 <raver119@gmail.com>

* more of thread safety

Signed-off-by: raver119 <raver119@gmail.com>

* one more multi threaded test

Signed-off-by: raver119 <raver119@gmail.com>

* SameDiff Convolution Config validation, better output methods (#82)

* Conv Config validation & tests

Signed-off-by: Ryan Nett <rnett@skymind.io>

* stackOutputs utility method

Signed-off-by: Ryan Nett <rnett@skymind.io>

* use constructor for validation, support negative kernel sizes (infered from weights)

Signed-off-by: Ryan Nett <rnett@skymind.io>

* better output methods

Signed-off-by: Ryan Nett <rnett@skymind.io>

* move output to be with fit and evaluate

Signed-off-by: Ryan Nett <rnett@skymind.io>

* fixes

Signed-off-by: Ryan Nett <rnett@skymind.io>

* more fixes

Signed-off-by: Ryan Nett <rnett@skymind.io>

* refactor duplicate code from pad methods. (#86)

* refactor duplicate code from pad methods.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* replace switch with if.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* Various ND4J/DL4J fixes and improvements (#87)

* Reshape and reallocate - small fixes

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Reshape and reallocate - small fixes

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #6488 ElementWiseVertex broadcast support

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Constructors and broadcast supported it Transforms.max/min

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8054 ElementWiseVertex now supports broadcast inputs

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8057 Nd4j.create overload dtype fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7551 ND4J Shape validation fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* [WIP] Numpy boolean import (#91)

* numpy bool type

Signed-off-by: raver119 <raver119@gmail.com>

* numpy bool java side

Signed-off-by: raver119 <raver119@gmail.com>

* remove create method with unused parameter. (#89)

* remove create method with unused parameter.

* removed more unused methods.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* removing more unused code.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* last removal of unused code.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* remove createSparse methods. (#92)

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* Various ND4J/DL4J fixes (#90)

* Deprecate Old*Op instances

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8063 #8054 Broadcast exceptions + cleanup inplace ops

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Small fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Remove bad test condition

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7993 Fix shape function issue in crop_and_resize op

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* DL4J SameDiff lambda layer fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8029 Fix for pnorm backprop math

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8038 Fix Op profiler NaN/Inf triggering + add tests (#93)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* createUninitializedDetached refactoring. (#94)

* wip

* update interface, add null implementations.

* Breaking one test in a weird way.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* createUninitializedDetached refactored.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* cuda build fix for issues introduced by recent refactoring

Signed-off-by: raver119 <raver119@gmail.com>

* [WIP] More of CUDA (#95)

* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* Implementation of hashcode cuda helper. Working edition.

* Fixed parallel test input arangements.

* Fixed tests for hashcode op.

* Fixed shape calculation for image:crop_and_resize op and test.

* NativeOps tests. Initial test suite.

* Added tests for indexReduce methods.

* Added test on execBroadcast with NDArray as dimensions.

* Added test on execBroadcastBool with NDArray as dimensions.

* Added tests on execPairwiseTransform and execPairwiseTransofrmBool.

* Added tests for execReduce with scalar results.

* Added reduce tests for non-empty dims array.

* Added tests for reduce3.

* Added tests for execScalar.

* Added tests for execSummaryStats.

* - provide cpu/cuda code for batch_to_space
- testing it

Signed-off-by: Yurii <yurii@skymind.io>

* - remove old test for batch_to_space (had wrong format and numbers were not checked)

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed complilation errors with test.

* Added test for execTransformFloat.

* Added test for execTransformSame.

* Added test for execTransformBool.

* Added test for execTransformStrict.

* Added tests for execScalar/execScalarBool with TADs.

* Added test for flatten.

* - provide cpu/cuda code for space_to_Batch operaion

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for concat.

* comment unnecessary stuff in s_t_b

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for specialConcat.

* Added tests for memcpy/set routines.

* Fixed pullRow cuda test.

* Added pullRow test.

* Added average test.

* - correct typo in NDArray::applyPairwiseTransform(nd4j::pairwise::BoolOps op...)

Signed-off-by: Yurii <yurii@skymind.io>

* - debugging and fixing cuda tests in JavaInteropTests file

Signed-off-by: Yurii <yurii@skymind.io>

* - correct some tests

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for shuffle.

* Fixed ops declarations.

* Restored omp and added shuffle test.

* Added convertTypes test.

* Added tests for execRandom. Eliminated usage of RandomBuffer with NativeOps.

* Added sort tests.

* Added tests for execCustomOp.

* - further debuging and fixing tests terminated with crash

Signed-off-by: Yurii <yurii@skymind.io>

* Added tests for calculateOutputShapes.

* Addded Benchmarks test.

* Commented benchmark tests.

* change assertion

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for apply_sgd op. Added cpu helper for that op.

* Implement cuda helper for aplly_sgd op. Fixed tests for NativeOps.

* Added test for assign broadcastable.

* Added tests for assign_bp op.

* Added tests for axpy op.

* - assign/execScalar/execTransformAny signature change
- minor test fix

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed axpy op.

* meh

Signed-off-by: raver119 <raver119@gmail.com>

* - fix tests for nativeOps::concat

Signed-off-by: Yurii <yurii@skymind.io>

* sequential transform/scalar

Signed-off-by: raver119 <raver119@gmail.com>

* allow nested parallelism

Signed-off-by: raver119 <raver119@gmail.com>

* assign_bp leak fix

Signed-off-by: raver119 <raver119@gmail.com>

* block setRNG fix

Signed-off-by: raver119 <raver119@gmail.com>

* enable parallelism by default

Signed-off-by: raver119 <raver119@gmail.com>

* enable nested parallelism by default

Signed-off-by: raver119 <raver119@gmail.com>

* Added cuda implementation for row_count helper.

* Added implementation for tnse gains op helper.

* - take into account possible situations when input arrays are empty in reduce_ cuda stuff

Signed-off-by: Yurii <yurii@skymind.io>

* Implemented tsne/edge_forces op cuda-based helper. Parallelized cpu-based helper for edge_forces.

* Added kernel for tsne/symmetrized op heleper.

* Implementation of tsne/symmetrized op cuda helper. Working edition.

* Eliminated waste printfs.

* Added test for broadcastgradientargs op.

* host-only fallback for empty reduce float

Signed-off-by: raver119 <raver119@gmail.com>

* - some tests fixes

Signed-off-by: Yurii <yurii@skymind.io>

* - correct the rest of reduce_ stuff

Signed-off-by: Yurii <yurii@skymind.io>

* - further correction of reduce_ stuff

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for Cbow op. Also added cuda implementation for cbow helpers.

* - improve code of stack operation for scalar case

Signed-off-by: Yurii <yurii@skymind.io>

* - provide cuda kernel for gatherND operation

Signed-off-by: Yurii <yurii@skymind.io>

* Implementation of cbow helpers with cuda kernels.

* minor tests tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* minor tests tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* - further correction of cuda stuff

Signed-off-by: Yurii <yurii@skymind.io>

* Implementatation of cbow op helper with cuda kernels. Working edition.

* Skip random testing for cudablas case.

* lstmBlockCell context fix

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for ELU and ELU_BP ops.

* Added tests for eq_scalar, gt_scalar, gte_scalar and lte_scalar ops.

* Added tests for neq_scalar.

* Added test for noop.

* - further work on clipbynorm_bp

Signed-off-by: Yurii <yurii@skymind.io>

* - get rid of concat op call, use instead direct concat helper call

Signed-off-by: Yurii <yurii@skymind.io>

* lstmBlockCell context fix

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for lrelu and lrelu_bp.

* Added tests for selu and selu_bp.

* Fixed lrelu derivative helpers.

* - some corrections in lstm

Signed-off-by: Yurii <yurii@skymind.io>

* operator * result shape fix

Signed-off-by: raver119 <raver119@gmail.com>

* - correct typo in lstmCell

Signed-off-by: Yurii <yurii@skymind.io>

* few tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA inverse broadcast bool fix

Signed-off-by: raver119 <raver119@gmail.com>

* disable MMAP test for CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* BooleanOp syncToDevice

Signed-off-by: raver119 <raver119@gmail.com>

* meh

Signed-off-by: raver119 <raver119@gmail.com>

* additional data types for im2col/col2im

Signed-off-by: raver119 <raver119@gmail.com>

* Added test for firas_sparse op.

* one more RandomBuffer test excluded

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for flatten op.

* Added test for Floor op.

* bunch of tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* mmulDot tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* Implemented floordiv_bp op and tests.

* Fixed scalar case with cuda implementation for bds.

* - work on cuda kernel for clip_by_norm backprop op is completed

Signed-off-by: Yurii <yurii@skymind.io>

* Eliminate cbow crach.

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* Eliminated abortion with batched nlp test.

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed shared flag initializing.

* disabled bunch of cpu workspaces tests

Signed-off-by: raver119 <raver119@gmail.com>

* scalar operators fix: missing registerSpecialUse call

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed logdet for cuda and tests.

* - correct clipBynorm_bp

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed crop_and_resize shape datatype.

* - correct some mmul tests

Signed-off-by: Yurii <yurii@skymind.io>

* build fix

Signed-off-by: raver119 <raver119@gmail.com>

* exclude two methods for JNI

Signed-off-by: raver119 <raver119@gmail.com>

* exclude two methods for JNI

Signed-off-by: raver119 <raver119@gmail.com>

* exclude two methods for JNI (#97)

Signed-off-by: raver119 <raver119@gmail.com>

* temporary stack fix

Signed-off-by: raver119 <raver119@gmail.com>

* round robin affinity test

Signed-off-by: raver119 <raver119@gmail.com>

* get rid of legacy CudaContext methods

Signed-off-by: raver119 <raver119@gmail.com>

* get rid of legacy ContextPool classes/methods

Signed-off-by: raver119 <raver119@gmail.com>

* one legacy test removed

Signed-off-by: raver119 <raver119@gmail.com>

* few more fields rearranged

Signed-off-by: raver119 <raver119@gmail.com>

* OpaqueLaunchContext

Signed-off-by: raver119 <raver119@gmail.com>

* OpaqueLaunchContext++

Signed-off-by: raver119 <raver119@gmail.com>

* more of OpaqueLaunchContext methods

Signed-off-by: raver119 <raver119@gmail.com>

* LaunchContext -> CudaContext

Signed-off-by: raver119 <raver119@gmail.com>

* AffinityManger changes

Signed-off-by: raver119 <raver119@gmail.com>

* AffinityManger changes

Signed-off-by: raver119 <raver119@gmail.com>

* cusolver handles

Signed-off-by: raver119 <raver119@gmail.com>

* typo

Signed-off-by: raver119 <raver119@gmail.com>

* cusolver method

Signed-off-by: raver119 <raver119@gmail.com>

* cusolver handle propagated

Signed-off-by: raver119 <raver119@gmail.com>

* blas/solver handles

Signed-off-by: raver119 <raver119@gmail.com>

* one more test

Signed-off-by: raver119 <raver119@gmail.com>

* legacy concat implementations replaced with new CustomOp

Signed-off-by: raver119 <raver119@gmail.com>

* one more test

Signed-off-by: raver119 <raver119@gmail.com>

* concat now uses way more blocks

Signed-off-by: raver119 <raver119@gmail.com>

* print

Signed-off-by: raver119 <raver119@gmail.com>

* no more triple template mmul

Signed-off-by: raver119 <raver119@gmail.com>

* bunch of kernels have dtypes reconsidered

Signed-off-by: raver119 <raver119@gmail.com>

* bunch of kernels have dtypes reconsidered

Signed-off-by: raver119 <raver119@gmail.com>

* bitonic sort reorganized

Signed-off-by: raver119 <raver119@gmail.com>

* bunch of cpu stuff removed from cuda scope

Signed-off-by: raver119 <raver119@gmail.com>

* bunch of cpu stuff removed from cuda scope

Signed-off-by: raver119 <raver119@gmail.com>

* type conversions moved to generic impl

Signed-off-by: raver119 <raver119@gmail.com>

* cpu data types pass

Signed-off-by: raver119 <raver119@gmail.com>

* non_max_suppression

Signed-off-by: raver119 <raver119@gmail.com>

* sortByValue fix

Signed-off-by: raver119 <raver119@gmail.com>

* ignore all mixed datatype tests for mmul

Signed-off-by: raver119 <raver119@gmail.com>

* special handling of OpProfiler exceptions

Signed-off-by: raver119 <raver119@gmail.com>

* - one failing concat test in cpp
- Nd4j.tile now uses op internally

Signed-off-by: raver119 <raver119@gmail.com>

* get back dtype exception for legacy arrays deserialization

Signed-off-by: raver119 <raver119@gmail.com>
2019-08-14 16:52:34 +03:00

377 lines
16 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include <ops/declarable/helpers/top_k.h>
#include <MmulHelper.h>
#include <NDArrayFactory.h>
#include <Status.h>
namespace nd4j {
namespace ops {
namespace helpers {
template <typename T>
static void swapRows_(NDArray* matrix, int theFirst, int theSecond) {
if (theFirst != theSecond)
for (int i = 0; i < matrix->columns(); i++) {
T e0 = matrix->e<T>(theFirst, i);
T e1 = matrix->e<T>(theSecond, i);
matrix->p<T>(theFirst, i, e1);
matrix->p<T>(theSecond, i, e0);
}
}
BUILD_SINGLE_TEMPLATE(template void swapRows_, (NDArray* matrix, int theFirst, int theSecond), FLOAT_TYPES);
void swapRows(NDArray* matrix, int theFirst, int theSecond) {
BUILD_SINGLE_SELECTOR(matrix->dataType(), swapRows_, (matrix, theFirst, theSecond), FLOAT_TYPES);
}
template <typename T>
static void invertLowerMatrix_(NDArray* inputMatrix, NDArray* invertedMatrix) {
int n = inputMatrix->rows();
invertedMatrix->assign(0.f);
PRAGMA_OMP_PARALLEL_FOR_IF(n > Environment::getInstance()->elementwiseThreshold())
for (int i = 0; i < n; i++)
invertedMatrix->p(i, i, 1.0f);
if (inputMatrix->isIdentityMatrix()) return;
PRAGMA_OMP_PARALLEL_FOR_IF(n > Environment::getInstance()->elementwiseThreshold())
for (int i = 1; i < n; i++)
invertedMatrix->t<T>(i, i - 1) = -inputMatrix->t<T>(i, i - 1);
//PRAGMA_OMP_PARALLEL_FOR_SIMD
for (int i = 2; i < n; i++) {
for (int j = i - 2; j > -1; --j)
for (int k = 0; k < i; k++)
invertedMatrix->t<T>(i, j) -= (invertedMatrix->t<T>(k, j) * inputMatrix->t<T>(i, k));
}
}
BUILD_SINGLE_TEMPLATE(template void invertLowerMatrix_, (NDArray* inputMatrix, NDArray* invertedMatrix);, FLOAT_TYPES);
void invertLowerMatrix(NDArray* inputMatrix, NDArray* invertedMatrix) {
BUILD_SINGLE_SELECTOR(inputMatrix->dataType(), invertLowerMatrix_, (inputMatrix, invertedMatrix), FLOAT_TYPES);
}
template <typename T>
static void _invertUpperMatrix(NDArray* inputMatrix, NDArray* invertedMatrix) {
int n = inputMatrix->rows();
invertedMatrix->setIdentity();
if (inputMatrix->isIdentityMatrix()) { // the inverse for I is I
return;
}
PRAGMA_OMP_PARALLEL_FOR_IF(n > Environment::getInstance()->elementwiseThreshold())
for (int i = 0; i < n; i++)
invertedMatrix->t<T>(i, i) /= inputMatrix->t<T>(i, i);
PRAGMA_OMP_PARALLEL_FOR_IF(n > Environment::getInstance()->elementwiseThreshold())
for (int i = 0; i < n - 1; i++)
invertedMatrix->t<T>(i, i + 1) -= (inputMatrix->t<T>(i, i + 1) * invertedMatrix->t<T>(i + 1, i + 1) / inputMatrix->t<T>(i, i));
// PRAGMA_OMP_PARALLEL_FOR_SIMD
for (int i = n - 2; i > - 1; i--) {
for (int j = i + 2; j < n; j++)
for (int k = i; k < n; k++)
invertedMatrix->t<T>(i, j) -= ((invertedMatrix->t<T>(k, j) * inputMatrix->t<T>(i, k) / inputMatrix->t<T>(i, i)));
}
}
BUILD_SINGLE_TEMPLATE(template void _invertUpperMatrix, (NDArray* inputMatrix, NDArray* invertedMatrix);, FLOAT_TYPES);
void invertUpperMatrix(NDArray* inputMatrix, NDArray* invertedMatrix) {
BUILD_SINGLE_SELECTOR(inputMatrix->dataType(), _invertUpperMatrix, (inputMatrix, invertedMatrix), FLOAT_TYPES);
}
template <typename T>
static NDArray lup_(NDArray* input, NDArray* compound, NDArray* permutation) {
const int rowNum = input->rows();
const int columnNum = input->columns();
NDArray determinant = NDArrayFactory::create<T>(1.f);
NDArray compoundMatrix = *input; // copy
NDArray permutationMatrix(input, false, input->getContext()); // has same shape as input and contiguous strides
permutationMatrix.setIdentity();
T pivotValue; // = T(0.0);
int pivot; // = -1;
int swapCount = 0;
for(int i = 0; i < rowNum; i++ ) {
pivotValue = T(0.0);
pivot = -1;
PRAGMA_OMP_PARALLEL_FOR //_ARGS(firstprivate(pivot,pivotValue))
for(int rowCounter = i; rowCounter < rowNum; rowCounter++ ) {
if (nd4j::math::nd4j_abs(compoundMatrix.t<T>(rowCounter, i)) > pivotValue) {
pivotValue = nd4j::math::nd4j_abs(compoundMatrix.t<T>(rowCounter, i));
pivot = rowCounter;
}
}
if( pivotValue > T(0.00001)) {
swapRows(&compoundMatrix, pivot, i);
swapRows(&permutationMatrix, pivot, i);
if (pivot != i)
swapCount++;
for( int j = i + 1; j < rowNum; j++ ) {
compoundMatrix.t<T>(j, i) /= compoundMatrix.t<T>(i, i);
PRAGMA_OMP_PARALLEL_FOR
for( int k = i + 1; k < rowNum; k++ ) {
compoundMatrix.t<T>(j, k) -= compoundMatrix.t<T>(j, i) * compoundMatrix.t<T>(i, k);
}
}
}
}
for (int e = 0; e < rowNum; e++) {
// nd4j_printf("Compound matrix diag %i %f.\n", e, (*compoundMatrix)(e, e));
determinant *= compoundMatrix.e<T>(e, e);
}
if (swapCount % 2) determinant = -determinant;
if (compound != nullptr)
compound->assign(compoundMatrix);
if (permutation != nullptr)
permutation->assign(permutationMatrix);
return determinant;
}
BUILD_SINGLE_TEMPLATE(template NDArray lup_, (NDArray* input, NDArray* output, NDArray* permutation), FLOAT_TYPES);
template <typename T>
static int determinant_(NDArray* input, NDArray* output) {
Nd4jLong n = input->sizeAt(-1);
Nd4jLong n2 = n * n;
auto matrix = NDArrayFactory::create(input->ordering(), {n, n}, input->dataType(), input->getContext()); //, block.getWorkspace());
for (int e = 0; e < output->lengthOf(); e++) {
for (int k = e * n2, row = 0; k < (e + 1) * n2; ++k, ++row)
matrix.p(row, input->e<T>(k));
output->p(e, lup_<T>(&matrix, (NDArray*)nullptr, (NDArray*)nullptr));
}
return Status::OK();
}
BUILD_SINGLE_TEMPLATE(template int determinant_, (NDArray* input, NDArray* output), FLOAT_TYPES);
int determinant(nd4j::LaunchContext * context, NDArray* input, NDArray* output) {
BUILD_SINGLE_SELECTOR(input->dataType(), return determinant_, (input, output), FLOAT_TYPES);
}
template <typename T>
int logAbsDeterminant_(NDArray* input, NDArray* output) {
Nd4jLong n = input->sizeAt(-1);
Nd4jLong n2 = n * n;
NDArray matrix = NDArrayFactory::create(input->ordering(), {n, n}, input->dataType(), input->getContext()); //, block.getWorkspace());
for (int e = 0; e < output->lengthOf(); e++) {
for (int k = e * n2, row = 0; k < (e + 1) * n2; ++k, ++row) {
matrix.p(row, input->e<T>(k));
}
NDArray det = lup_<T>(&matrix, (NDArray*)nullptr, (NDArray*)nullptr);
if (det.e<T>(0) != 0.f)
output->p(e, nd4j::math::nd4j_log<T,T>(nd4j::math::nd4j_abs(det.t<T>(0))));
}
return ND4J_STATUS_OK;
}
BUILD_SINGLE_TEMPLATE(template int logAbsDeterminant_, (NDArray* input, NDArray* output), FLOAT_TYPES);
int logAbsDeterminant(nd4j::LaunchContext * context, NDArray* input, NDArray* output) {
BUILD_SINGLE_SELECTOR(input->dataType(), return logAbsDeterminant_, (input, output), FLOAT_TYPES);
}
template <typename T>
static int inverse_(NDArray* input, NDArray* output) {
auto n = input->sizeAt(-1);
auto n2 = n * n;
auto totalCount = output->lengthOf() / n2;
output->assign(0.f); // fill up output tensor with zeros
auto matrix = NDArrayFactory::create('c', {n, n}, DataTypeUtils::fromT<T>(), input->getContext()); //, block.getWorkspace());
auto compound = NDArrayFactory::create('c', {n, n}, DataTypeUtils::fromT<T>(), input->getContext()); //, block.getWorkspace());
auto permutation = NDArrayFactory::create('c', {n, n}, DataTypeUtils::fromT<T>(), input->getContext());
auto lowerMatrix = NDArrayFactory::create('c', {n, n}, DataTypeUtils::fromT<T>(), input->getContext());
auto upperMatrix = NDArrayFactory::create('c', {n, n}, DataTypeUtils::fromT<T>(), input->getContext());
for (int e = 0; e < totalCount; e++) {
if (e)
matrix.assign(0.f);
for (int k = e * n2, row = 0; k < (e + 1) * n2; k++) {
matrix.p(row++, input->e<T>(k));
}
T det = lup_<T>(&matrix, &compound, &permutation).template e<T>(0);
// FIXME: and how this is going to work on float16?
if (nd4j::math::nd4j_abs<T>(det) < T(0.000001)) {
nd4j_printf("matrix_inverse: The matrix %i has no inverse due determinant is %lf. Quiting...\n", e, det);
matrix.printIndexedBuffer("Wrong matrix");
return ND4J_STATUS_VALIDATION;
}
lowerMatrix.setIdentity(); // set up U to identity matrix
for (int k = 1; k < n; k++) { // and then put all values under main diagonal on to it
for (int j = 0; j < k; j++)
lowerMatrix.template t<T>(k, j) = compound.template t<T>(k, j);
}
upperMatrix.setIdentity(); // set up U to identity matrix
for (int k = 0; k < n; k++) { // and then put all values under main diagonal on to it
for (int j = k; j < n; j++)
upperMatrix.template t<T>(k, j) = compound.template e<T>(k, j);
}
invertUpperMatrix(&upperMatrix, &matrix);
invertLowerMatrix(&lowerMatrix, &upperMatrix);
nd4j::MmulHelper::mmul(&matrix, &upperMatrix, &compound, 1.0, 0.0);
nd4j::MmulHelper::mmul(&compound, &permutation, &matrix, 1.0, 0.0);
for (int k = e * n2, row = 0; k < (e + 1) * n2; k++) {
output->t<T>(k) = matrix.template t<T>(row++);
}
}
return Status::OK();
}
int inverse(nd4j::LaunchContext * context, NDArray* input, NDArray* output) {
BUILD_SINGLE_SELECTOR(input->dataType(), return inverse_, (input, output), FLOAT_TYPES);
}
template <typename T>
static bool checkCholeskyInput_(nd4j::LaunchContext * context, NDArray const* input) {
//std::unique_ptr<NDArray> matrix(NDArrayFactory::create_('c', {n, n}, input->dataType())); //, block.getWorkspace());
std::unique_ptr<ResultSet> lastMatrixList(input->allTensorsAlongDimension({input->rankOf() - 2, input->rankOf()-1}));
for (size_t i = 0; i < lastMatrixList->size(); i++) {
auto thisMatrix = lastMatrixList->at(i);
// check for symmetric
for (Nd4jLong r = 0; r < thisMatrix->rows(); r++)
for (Nd4jLong c = 0; c < thisMatrix->columns(); c++)
if (nd4j::math::nd4j_abs(thisMatrix->e<T>(r, c) - lastMatrixList->at(i)->e<T>(c,r)) > T(1.e-6f)) return false;
NDArray output = NDArrayFactory::create<T>(0., context);
if (ND4J_STATUS_OK != determinant(context, thisMatrix, &output)) return false;
if (output.e<T>(0) <= T(0)) return 0;
NDArray reversedMatrix(*thisMatrix);
if (ND4J_STATUS_OK != inverse(context, thisMatrix, &reversedMatrix)) return false;
if (ND4J_STATUS_OK != determinant(context, &reversedMatrix, &output)) return false;
if (output.e<T>(0) <= T(0)) return 0;
}
return true;
}
BUILD_SINGLE_TEMPLATE(template bool checkCholeskyInput_, (nd4j::LaunchContext * context, NDArray const* input), FLOAT_TYPES);
bool checkCholeskyInput(nd4j::LaunchContext * context, NDArray const* input) {
BUILD_SINGLE_SELECTOR(input->dataType(), return checkCholeskyInput_, (context, input), FLOAT_TYPES);
}
template <typename T>
int cholesky_(NDArray* input, NDArray* output, bool inplace) {
auto n = input->sizeAt(-1);
auto n2 = n * n;
auto totalCount = output->lengthOf() / n2;
if (!inplace)
output->assign(0.f); // fill up output tensor with zeros only inplace=false
std::unique_ptr<NDArray> matrix(NDArrayFactory::create_('c', {n, n}, input->dataType(), input->getContext())); //, block.getWorkspace());
std::unique_ptr<NDArray> lowerMatrix(NDArrayFactory::create_('c',{n, n}, input->dataType(), input->getContext()));
for (int e = 0; e < totalCount; e++) {
// fill up matrix
for (int k = e * n2, l = 0; k < (e + 1) * n2; k++) {
matrix->p(l++, input->e<T>(k));
}
//if (e) // from the second loop need to zero matrix
lowerMatrix->assign(0.f);
for (Nd4jLong col = 0; col < n; col++) {
for (Nd4jLong row = 0; row < col; row++) {
T rowSum = 0;
for (Nd4jLong k = 0; k < row; ++k)
rowSum += (lowerMatrix->e<T>(col, k) * lowerMatrix->e<T>(row, k));
lowerMatrix->p(col, row, (matrix->e<T>(row, col) - rowSum) / lowerMatrix->e<double>(row, row));
}
T diagonalSum = 0;
for (Nd4jLong k = 0; k < col; ++k)
diagonalSum += lowerMatrix->e<T>(col, k) * lowerMatrix->e<T>(col, k);
lowerMatrix->p(col, col, nd4j::math::nd4j_sqrt<T, T>(matrix->e<T>(col, col) - diagonalSum));
//nd4j_printf("%i: ", col);
//lowerMatrix->printIndexedBuffer("Lower matrix");
}
for (int k = e * n2, l = 0; k < (e + 1) * n2; k++) {
output->p(k, lowerMatrix->e<T>(l++));
}
}
return ND4J_STATUS_OK;
}
int cholesky(nd4j::LaunchContext * context, NDArray* input, NDArray* output, bool inplace) {
BUILD_SINGLE_SELECTOR(input->dataType(), return cholesky_, (input, output, inplace), FLOAT_TYPES);
}
template <typename T>
int logdetFunctor_(NDArray* input, NDArray* output) {
std::unique_ptr<NDArray> tempOutput(input->dup());
int res = cholesky_<T>(input, tempOutput.get(), false);
if (res != ND4J_STATUS_OK)
return res;
auto n = input->sizeAt(-1);
auto totalCount = output->lengthOf();
std::vector<T> d(n);
std::unique_ptr<ResultSet> matricies(tempOutput->allTensorsAlongDimension({input->rankOf()-2, input->rankOf() - 1}));
std::unique_ptr<ResultSet> inputMatricies(input->allTensorsAlongDimension({input->rankOf()-2, input->rankOf() - 1}));
for (Nd4jLong e = 0; e < totalCount; e++) {
//d[0] = inputMatricies->at(e)->t<T>(0, 0);
for (size_t i = 0; i < n; ++i) {
output->t<T>(e) += nd4j::math::nd4j_log<T,T>(nd4j::math::nd4j_pow<T,T,T>(matricies->at(e)->t<T>(i, i), T(2)));
}
}
return ND4J_STATUS_OK;
}
int logdetFunctor(nd4j::LaunchContext * context, NDArray* input, NDArray* output) {
BUILD_SINGLE_SELECTOR(input->dataType(), return logdetFunctor_, (input, output), FLOAT_TYPES);
}
}
}
}