* fix pad javadoc and @see links. (#72) Signed-off-by: Robert Altena <Rob@Ra-ai.com> * [WIP] More fixes (#73) * special tests for ConstantTadHelper/ConstantShapeHelper Signed-off-by: raver119 <raver119@gmail.com> * release methods for data buffers Signed-off-by: raver119 <raver119@gmail.com> * delete temporary buffer Java side Signed-off-by: raver119 <raver119@gmail.com> * delete temporary buffer Java side Signed-off-by: raver119 <raver119@gmail.com> * delete temporary TadPack C++/Java side (#74) Signed-off-by: raver119 <raver119@gmail.com> * Zoo model TF import test updates (#75) * argLine fix, update compression_gru comment * updated comment for xception * undid but commented argLine change * updated xlnet comment * copyright headers * - new NDArray methods like()/ulike() (#77) - fix for depthwise_conv2d_bp + special test Signed-off-by: raver119 <raver119@gmail.com> * upsampling2d fix CUDA Signed-off-by: raver119 <raver119@gmail.com> * DL4J trace logging (#79) * MLN/CG trace logging for debugging Signed-off-by: AlexDBlack <blacka101@gmail.com> * Tiny tweak Signed-off-by: AlexDBlack <blacka101@gmail.com> * strided_slice_bp shape fn leak fix Signed-off-by: raver119 <raver119@gmail.com> * SameDiff fixes and naming (#78) * remove SDVariable inplace methods * import methods * npe fix in OpVal * removed SameDiff inplace ops from tests * Naming updates, moved to centralized methods in SameDiff, should use op_#:# for everything * quick fixes * javadoc * SDVariable eval with placeholders * use regex match * better matching * initial commit Signed-off-by: raver119 <raver119@gmail.com> * initial commit Signed-off-by: raver119 <raver119@gmail.com> * fix javadoc. (#76) * fix javadoc. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * replace most @see with @link s. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * 4 additional tests Signed-off-by: raver119 <raver119@gmail.com> * launch context reorganization Signed-off-by: raver119 <raver119@gmail.com> * LaunchContext reorganization Signed-off-by: raver119 <raver119@gmail.com> * per-device LaunchContext Signed-off-by: raver119 <raver119@gmail.com> * Various DL4J/ND4J fixes (#81) * #7954 Force refresh of UI when switching tabs on overview page Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8017 Concurrent modification exception (synchronize) fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8033 Don't initialize updater in middle of writing memory crash dump Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8208 Fix shape checks for ND4J int[] creator methods Signed-off-by: AlexDBlack <blacka101@gmail.com> * #6385 #7992 Keras import naming fixes + cleanup Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8016 Upsampling3D - add NDHWC format support Signed-off-by: AlexDBlack <blacka101@gmail.com> * ContextBuffers as separate entity Signed-off-by: raver119 <raver119@gmail.com> * Refactor NativeOps.h to export C functions * Actually export functions from NativeOps.h * Adapt the Java wrappers in ND4J generated with JavaCPP * Create C wrappers for some of the C++ classes currently used by ND4J * ContextBuffers as separate entity Signed-off-by: raver119 <raver119@gmail.com> * remove duplicate code in createBufferDetached. (#83) Signed-off-by: Robert Altena <Rob@Ra-ai.com> * Keras model import - updater lr fix (#84) * Keras model import - updater lr fix Signed-off-by: eraly <susan.eraly@gmail.com> * Keras model import - updater lr fix, cleanup Signed-off-by: eraly <susan.eraly@gmail.com> * ContextBuffers as separate entity Signed-off-by: raver119 <raver119@gmail.com> * ContextBuffers as separate entity Signed-off-by: raver119 <raver119@gmail.com> * Fix functions of OpaqueVariablesSet * thread-local buffers/affinity Signed-off-by: raver119 <raver119@gmail.com> * thread safety for LaunchContext Signed-off-by: raver119 <raver119@gmail.com> * more of thread safety Signed-off-by: raver119 <raver119@gmail.com> * one more multi threaded test Signed-off-by: raver119 <raver119@gmail.com> * SameDiff Convolution Config validation, better output methods (#82) * Conv Config validation & tests Signed-off-by: Ryan Nett <rnett@skymind.io> * stackOutputs utility method Signed-off-by: Ryan Nett <rnett@skymind.io> * use constructor for validation, support negative kernel sizes (infered from weights) Signed-off-by: Ryan Nett <rnett@skymind.io> * better output methods Signed-off-by: Ryan Nett <rnett@skymind.io> * move output to be with fit and evaluate Signed-off-by: Ryan Nett <rnett@skymind.io> * fixes Signed-off-by: Ryan Nett <rnett@skymind.io> * more fixes Signed-off-by: Ryan Nett <rnett@skymind.io> * refactor duplicate code from pad methods. (#86) * refactor duplicate code from pad methods. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * replace switch with if. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * Various ND4J/DL4J fixes and improvements (#87) * Reshape and reallocate - small fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * Reshape and reallocate - small fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * #6488 ElementWiseVertex broadcast support Signed-off-by: AlexDBlack <blacka101@gmail.com> * Constructors and broadcast supported it Transforms.max/min Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8054 ElementWiseVertex now supports broadcast inputs Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8057 Nd4j.create overload dtype fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7551 ND4J Shape validation fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] Numpy boolean import (#91) * numpy bool type Signed-off-by: raver119 <raver119@gmail.com> * numpy bool java side Signed-off-by: raver119 <raver119@gmail.com> * remove create method with unused parameter. (#89) * remove create method with unused parameter. * removed more unused methods. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * removing more unused code. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * last removal of unused code. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * remove createSparse methods. (#92) Signed-off-by: Robert Altena <Rob@Ra-ai.com> * Various ND4J/DL4J fixes (#90) * Deprecate Old*Op instances Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8063 #8054 Broadcast exceptions + cleanup inplace ops Signed-off-by: AlexDBlack <blacka101@gmail.com> * Small fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Remove bad test condition Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7993 Fix shape function issue in crop_and_resize op Signed-off-by: AlexDBlack <blacka101@gmail.com> * DL4J SameDiff lambda layer fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8029 Fix for pnorm backprop math Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8038 Fix Op profiler NaN/Inf triggering + add tests (#93) Signed-off-by: AlexDBlack <blacka101@gmail.com> * createUninitializedDetached refactoring. (#94) * wip * update interface, add null implementations. * Breaking one test in a weird way. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * createUninitializedDetached refactored. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * cuda build fix for issues introduced by recent refactoring Signed-off-by: raver119 <raver119@gmail.com> * [WIP] More of CUDA (#95) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * Implementation of hashcode cuda helper. Working edition. * Fixed parallel test input arangements. * Fixed tests for hashcode op. * Fixed shape calculation for image:crop_and_resize op and test. * NativeOps tests. Initial test suite. * Added tests for indexReduce methods. * Added test on execBroadcast with NDArray as dimensions. * Added test on execBroadcastBool with NDArray as dimensions. * Added tests on execPairwiseTransform and execPairwiseTransofrmBool. * Added tests for execReduce with scalar results. * Added reduce tests for non-empty dims array. * Added tests for reduce3. * Added tests for execScalar. * Added tests for execSummaryStats. * - provide cpu/cuda code for batch_to_space - testing it Signed-off-by: Yurii <yurii@skymind.io> * - remove old test for batch_to_space (had wrong format and numbers were not checked) Signed-off-by: Yurii <yurii@skymind.io> * Fixed complilation errors with test. * Added test for execTransformFloat. * Added test for execTransformSame. * Added test for execTransformBool. * Added test for execTransformStrict. * Added tests for execScalar/execScalarBool with TADs. * Added test for flatten. * - provide cpu/cuda code for space_to_Batch operaion Signed-off-by: Yurii <yurii@skymind.io> * Added test for concat. * comment unnecessary stuff in s_t_b Signed-off-by: Yurii <yurii@skymind.io> * Added test for specialConcat. * Added tests for memcpy/set routines. * Fixed pullRow cuda test. * Added pullRow test. * Added average test. * - correct typo in NDArray::applyPairwiseTransform(nd4j::pairwise::BoolOps op...) Signed-off-by: Yurii <yurii@skymind.io> * - debugging and fixing cuda tests in JavaInteropTests file Signed-off-by: Yurii <yurii@skymind.io> * - correct some tests Signed-off-by: Yurii <yurii@skymind.io> * Added test for shuffle. * Fixed ops declarations. * Restored omp and added shuffle test. * Added convertTypes test. * Added tests for execRandom. Eliminated usage of RandomBuffer with NativeOps. * Added sort tests. * Added tests for execCustomOp. * - further debuging and fixing tests terminated with crash Signed-off-by: Yurii <yurii@skymind.io> * Added tests for calculateOutputShapes. * Addded Benchmarks test. * Commented benchmark tests. * change assertion Signed-off-by: raver119 <raver119@gmail.com> * Added tests for apply_sgd op. Added cpu helper for that op. * Implement cuda helper for aplly_sgd op. Fixed tests for NativeOps. * Added test for assign broadcastable. * Added tests for assign_bp op. * Added tests for axpy op. * - assign/execScalar/execTransformAny signature change - minor test fix Signed-off-by: raver119 <raver119@gmail.com> * Fixed axpy op. * meh Signed-off-by: raver119 <raver119@gmail.com> * - fix tests for nativeOps::concat Signed-off-by: Yurii <yurii@skymind.io> * sequential transform/scalar Signed-off-by: raver119 <raver119@gmail.com> * allow nested parallelism Signed-off-by: raver119 <raver119@gmail.com> * assign_bp leak fix Signed-off-by: raver119 <raver119@gmail.com> * block setRNG fix Signed-off-by: raver119 <raver119@gmail.com> * enable parallelism by default Signed-off-by: raver119 <raver119@gmail.com> * enable nested parallelism by default Signed-off-by: raver119 <raver119@gmail.com> * Added cuda implementation for row_count helper. * Added implementation for tnse gains op helper. * - take into account possible situations when input arrays are empty in reduce_ cuda stuff Signed-off-by: Yurii <yurii@skymind.io> * Implemented tsne/edge_forces op cuda-based helper. Parallelized cpu-based helper for edge_forces. * Added kernel for tsne/symmetrized op heleper. * Implementation of tsne/symmetrized op cuda helper. Working edition. * Eliminated waste printfs. * Added test for broadcastgradientargs op. * host-only fallback for empty reduce float Signed-off-by: raver119 <raver119@gmail.com> * - some tests fixes Signed-off-by: Yurii <yurii@skymind.io> * - correct the rest of reduce_ stuff Signed-off-by: Yurii <yurii@skymind.io> * - further correction of reduce_ stuff Signed-off-by: Yurii <yurii@skymind.io> * Added test for Cbow op. Also added cuda implementation for cbow helpers. * - improve code of stack operation for scalar case Signed-off-by: Yurii <yurii@skymind.io> * - provide cuda kernel for gatherND operation Signed-off-by: Yurii <yurii@skymind.io> * Implementation of cbow helpers with cuda kernels. * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * - further correction of cuda stuff Signed-off-by: Yurii <yurii@skymind.io> * Implementatation of cbow op helper with cuda kernels. Working edition. * Skip random testing for cudablas case. * lstmBlockCell context fix Signed-off-by: raver119 <raver119@gmail.com> * Added tests for ELU and ELU_BP ops. * Added tests for eq_scalar, gt_scalar, gte_scalar and lte_scalar ops. * Added tests for neq_scalar. * Added test for noop. * - further work on clipbynorm_bp Signed-off-by: Yurii <yurii@skymind.io> * - get rid of concat op call, use instead direct concat helper call Signed-off-by: Yurii <yurii@skymind.io> * lstmBlockCell context fix Signed-off-by: raver119 <raver119@gmail.com> * Added tests for lrelu and lrelu_bp. * Added tests for selu and selu_bp. * Fixed lrelu derivative helpers. * - some corrections in lstm Signed-off-by: Yurii <yurii@skymind.io> * operator * result shape fix Signed-off-by: raver119 <raver119@gmail.com> * - correct typo in lstmCell Signed-off-by: Yurii <yurii@skymind.io> * few tests fixed Signed-off-by: raver119 <raver119@gmail.com> * CUDA inverse broadcast bool fix Signed-off-by: raver119 <raver119@gmail.com> * disable MMAP test for CUDA Signed-off-by: raver119 <raver119@gmail.com> * BooleanOp syncToDevice Signed-off-by: raver119 <raver119@gmail.com> * meh Signed-off-by: raver119 <raver119@gmail.com> * additional data types for im2col/col2im Signed-off-by: raver119 <raver119@gmail.com> * Added test for firas_sparse op. * one more RandomBuffer test excluded Signed-off-by: raver119 <raver119@gmail.com> * Added tests for flatten op. * Added test for Floor op. * bunch of tests fixed Signed-off-by: raver119 <raver119@gmail.com> * mmulDot tests fixed Signed-off-by: raver119 <raver119@gmail.com> * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * Implemented floordiv_bp op and tests. * Fixed scalar case with cuda implementation for bds. * - work on cuda kernel for clip_by_norm backprop op is completed Signed-off-by: Yurii <yurii@skymind.io> * Eliminate cbow crach. * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * Eliminated abortion with batched nlp test. * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * Fixed shared flag initializing. * disabled bunch of cpu workspaces tests Signed-off-by: raver119 <raver119@gmail.com> * scalar operators fix: missing registerSpecialUse call Signed-off-by: raver119 <raver119@gmail.com> * Fixed logdet for cuda and tests. * - correct clipBynorm_bp Signed-off-by: Yurii <yurii@skymind.io> * Fixed crop_and_resize shape datatype. * - correct some mmul tests Signed-off-by: Yurii <yurii@skymind.io> * build fix Signed-off-by: raver119 <raver119@gmail.com> * exclude two methods for JNI Signed-off-by: raver119 <raver119@gmail.com> * exclude two methods for JNI Signed-off-by: raver119 <raver119@gmail.com> * exclude two methods for JNI (#97) Signed-off-by: raver119 <raver119@gmail.com> * temporary stack fix Signed-off-by: raver119 <raver119@gmail.com> * round robin affinity test Signed-off-by: raver119 <raver119@gmail.com> * get rid of legacy CudaContext methods Signed-off-by: raver119 <raver119@gmail.com> * get rid of legacy ContextPool classes/methods Signed-off-by: raver119 <raver119@gmail.com> * one legacy test removed Signed-off-by: raver119 <raver119@gmail.com> * few more fields rearranged Signed-off-by: raver119 <raver119@gmail.com> * OpaqueLaunchContext Signed-off-by: raver119 <raver119@gmail.com> * OpaqueLaunchContext++ Signed-off-by: raver119 <raver119@gmail.com> * more of OpaqueLaunchContext methods Signed-off-by: raver119 <raver119@gmail.com> * LaunchContext -> CudaContext Signed-off-by: raver119 <raver119@gmail.com> * AffinityManger changes Signed-off-by: raver119 <raver119@gmail.com> * AffinityManger changes Signed-off-by: raver119 <raver119@gmail.com> * cusolver handles Signed-off-by: raver119 <raver119@gmail.com> * typo Signed-off-by: raver119 <raver119@gmail.com> * cusolver method Signed-off-by: raver119 <raver119@gmail.com> * cusolver handle propagated Signed-off-by: raver119 <raver119@gmail.com> * blas/solver handles Signed-off-by: raver119 <raver119@gmail.com> * one more test Signed-off-by: raver119 <raver119@gmail.com> * legacy concat implementations replaced with new CustomOp Signed-off-by: raver119 <raver119@gmail.com> * one more test Signed-off-by: raver119 <raver119@gmail.com> * concat now uses way more blocks Signed-off-by: raver119 <raver119@gmail.com> * print Signed-off-by: raver119 <raver119@gmail.com> * no more triple template mmul Signed-off-by: raver119 <raver119@gmail.com> * bunch of kernels have dtypes reconsidered Signed-off-by: raver119 <raver119@gmail.com> * bunch of kernels have dtypes reconsidered Signed-off-by: raver119 <raver119@gmail.com> * bitonic sort reorganized Signed-off-by: raver119 <raver119@gmail.com> * bunch of cpu stuff removed from cuda scope Signed-off-by: raver119 <raver119@gmail.com> * bunch of cpu stuff removed from cuda scope Signed-off-by: raver119 <raver119@gmail.com> * type conversions moved to generic impl Signed-off-by: raver119 <raver119@gmail.com> * cpu data types pass Signed-off-by: raver119 <raver119@gmail.com> * non_max_suppression Signed-off-by: raver119 <raver119@gmail.com> * sortByValue fix Signed-off-by: raver119 <raver119@gmail.com> * ignore all mixed datatype tests for mmul Signed-off-by: raver119 <raver119@gmail.com> * special handling of OpProfiler exceptions Signed-off-by: raver119 <raver119@gmail.com> * - one failing concat test in cpp - Nd4j.tile now uses op internally Signed-off-by: raver119 <raver119@gmail.com> * get back dtype exception for legacy arrays deserialization Signed-off-by: raver119 <raver119@gmail.com>
377 lines
16 KiB
C++
377 lines
16 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author raver119@gmail.com
|
|
//
|
|
|
|
#include <ops/declarable/helpers/top_k.h>
|
|
#include <MmulHelper.h>
|
|
#include <NDArrayFactory.h>
|
|
#include <Status.h>
|
|
|
|
namespace nd4j {
|
|
namespace ops {
|
|
namespace helpers {
|
|
|
|
template <typename T>
|
|
static void swapRows_(NDArray* matrix, int theFirst, int theSecond) {
|
|
|
|
if (theFirst != theSecond)
|
|
for (int i = 0; i < matrix->columns(); i++) {
|
|
T e0 = matrix->e<T>(theFirst, i);
|
|
T e1 = matrix->e<T>(theSecond, i);
|
|
|
|
matrix->p<T>(theFirst, i, e1);
|
|
matrix->p<T>(theSecond, i, e0);
|
|
}
|
|
}
|
|
BUILD_SINGLE_TEMPLATE(template void swapRows_, (NDArray* matrix, int theFirst, int theSecond), FLOAT_TYPES);
|
|
|
|
void swapRows(NDArray* matrix, int theFirst, int theSecond) {
|
|
BUILD_SINGLE_SELECTOR(matrix->dataType(), swapRows_, (matrix, theFirst, theSecond), FLOAT_TYPES);
|
|
}
|
|
|
|
template <typename T>
|
|
static void invertLowerMatrix_(NDArray* inputMatrix, NDArray* invertedMatrix) {
|
|
int n = inputMatrix->rows();
|
|
invertedMatrix->assign(0.f);
|
|
|
|
PRAGMA_OMP_PARALLEL_FOR_IF(n > Environment::getInstance()->elementwiseThreshold())
|
|
for (int i = 0; i < n; i++)
|
|
invertedMatrix->p(i, i, 1.0f);
|
|
|
|
if (inputMatrix->isIdentityMatrix()) return;
|
|
|
|
PRAGMA_OMP_PARALLEL_FOR_IF(n > Environment::getInstance()->elementwiseThreshold())
|
|
for (int i = 1; i < n; i++)
|
|
invertedMatrix->t<T>(i, i - 1) = -inputMatrix->t<T>(i, i - 1);
|
|
|
|
//PRAGMA_OMP_PARALLEL_FOR_SIMD
|
|
for (int i = 2; i < n; i++) {
|
|
for (int j = i - 2; j > -1; --j)
|
|
for (int k = 0; k < i; k++)
|
|
invertedMatrix->t<T>(i, j) -= (invertedMatrix->t<T>(k, j) * inputMatrix->t<T>(i, k));
|
|
}
|
|
}
|
|
|
|
BUILD_SINGLE_TEMPLATE(template void invertLowerMatrix_, (NDArray* inputMatrix, NDArray* invertedMatrix);, FLOAT_TYPES);
|
|
|
|
void invertLowerMatrix(NDArray* inputMatrix, NDArray* invertedMatrix) {
|
|
BUILD_SINGLE_SELECTOR(inputMatrix->dataType(), invertLowerMatrix_, (inputMatrix, invertedMatrix), FLOAT_TYPES);
|
|
}
|
|
|
|
template <typename T>
|
|
static void _invertUpperMatrix(NDArray* inputMatrix, NDArray* invertedMatrix) {
|
|
int n = inputMatrix->rows();
|
|
invertedMatrix->setIdentity();
|
|
|
|
if (inputMatrix->isIdentityMatrix()) { // the inverse for I is I
|
|
return;
|
|
}
|
|
|
|
PRAGMA_OMP_PARALLEL_FOR_IF(n > Environment::getInstance()->elementwiseThreshold())
|
|
for (int i = 0; i < n; i++)
|
|
invertedMatrix->t<T>(i, i) /= inputMatrix->t<T>(i, i);
|
|
|
|
PRAGMA_OMP_PARALLEL_FOR_IF(n > Environment::getInstance()->elementwiseThreshold())
|
|
for (int i = 0; i < n - 1; i++)
|
|
invertedMatrix->t<T>(i, i + 1) -= (inputMatrix->t<T>(i, i + 1) * invertedMatrix->t<T>(i + 1, i + 1) / inputMatrix->t<T>(i, i));
|
|
|
|
// PRAGMA_OMP_PARALLEL_FOR_SIMD
|
|
for (int i = n - 2; i > - 1; i--) {
|
|
for (int j = i + 2; j < n; j++)
|
|
for (int k = i; k < n; k++)
|
|
invertedMatrix->t<T>(i, j) -= ((invertedMatrix->t<T>(k, j) * inputMatrix->t<T>(i, k) / inputMatrix->t<T>(i, i)));
|
|
}
|
|
}
|
|
|
|
BUILD_SINGLE_TEMPLATE(template void _invertUpperMatrix, (NDArray* inputMatrix, NDArray* invertedMatrix);, FLOAT_TYPES);
|
|
|
|
void invertUpperMatrix(NDArray* inputMatrix, NDArray* invertedMatrix) {
|
|
BUILD_SINGLE_SELECTOR(inputMatrix->dataType(), _invertUpperMatrix, (inputMatrix, invertedMatrix), FLOAT_TYPES);
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
static NDArray lup_(NDArray* input, NDArray* compound, NDArray* permutation) {
|
|
|
|
const int rowNum = input->rows();
|
|
const int columnNum = input->columns();
|
|
|
|
NDArray determinant = NDArrayFactory::create<T>(1.f);
|
|
NDArray compoundMatrix = *input; // copy
|
|
NDArray permutationMatrix(input, false, input->getContext()); // has same shape as input and contiguous strides
|
|
permutationMatrix.setIdentity();
|
|
|
|
T pivotValue; // = T(0.0);
|
|
int pivot; // = -1;
|
|
int swapCount = 0;
|
|
|
|
for(int i = 0; i < rowNum; i++ ) {
|
|
pivotValue = T(0.0);
|
|
pivot = -1;
|
|
PRAGMA_OMP_PARALLEL_FOR //_ARGS(firstprivate(pivot,pivotValue))
|
|
for(int rowCounter = i; rowCounter < rowNum; rowCounter++ ) {
|
|
if (nd4j::math::nd4j_abs(compoundMatrix.t<T>(rowCounter, i)) > pivotValue) {
|
|
pivotValue = nd4j::math::nd4j_abs(compoundMatrix.t<T>(rowCounter, i));
|
|
pivot = rowCounter;
|
|
}
|
|
}
|
|
|
|
if( pivotValue > T(0.00001)) {
|
|
swapRows(&compoundMatrix, pivot, i);
|
|
swapRows(&permutationMatrix, pivot, i);
|
|
if (pivot != i)
|
|
swapCount++;
|
|
|
|
for( int j = i + 1; j < rowNum; j++ ) {
|
|
compoundMatrix.t<T>(j, i) /= compoundMatrix.t<T>(i, i);
|
|
PRAGMA_OMP_PARALLEL_FOR
|
|
for( int k = i + 1; k < rowNum; k++ ) {
|
|
compoundMatrix.t<T>(j, k) -= compoundMatrix.t<T>(j, i) * compoundMatrix.t<T>(i, k);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int e = 0; e < rowNum; e++) {
|
|
// nd4j_printf("Compound matrix diag %i %f.\n", e, (*compoundMatrix)(e, e));
|
|
determinant *= compoundMatrix.e<T>(e, e);
|
|
}
|
|
if (swapCount % 2) determinant = -determinant;
|
|
if (compound != nullptr)
|
|
compound->assign(compoundMatrix);
|
|
if (permutation != nullptr)
|
|
permutation->assign(permutationMatrix);
|
|
return determinant;
|
|
}
|
|
|
|
BUILD_SINGLE_TEMPLATE(template NDArray lup_, (NDArray* input, NDArray* output, NDArray* permutation), FLOAT_TYPES);
|
|
|
|
|
|
|
|
template <typename T>
|
|
static int determinant_(NDArray* input, NDArray* output) {
|
|
|
|
Nd4jLong n = input->sizeAt(-1);
|
|
Nd4jLong n2 = n * n;
|
|
|
|
auto matrix = NDArrayFactory::create(input->ordering(), {n, n}, input->dataType(), input->getContext()); //, block.getWorkspace());
|
|
|
|
for (int e = 0; e < output->lengthOf(); e++) {
|
|
for (int k = e * n2, row = 0; k < (e + 1) * n2; ++k, ++row)
|
|
matrix.p(row, input->e<T>(k));
|
|
output->p(e, lup_<T>(&matrix, (NDArray*)nullptr, (NDArray*)nullptr));
|
|
}
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
BUILD_SINGLE_TEMPLATE(template int determinant_, (NDArray* input, NDArray* output), FLOAT_TYPES);
|
|
|
|
int determinant(nd4j::LaunchContext * context, NDArray* input, NDArray* output) {
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), return determinant_, (input, output), FLOAT_TYPES);
|
|
}
|
|
|
|
template <typename T>
|
|
int logAbsDeterminant_(NDArray* input, NDArray* output) {
|
|
|
|
Nd4jLong n = input->sizeAt(-1);
|
|
Nd4jLong n2 = n * n;
|
|
|
|
NDArray matrix = NDArrayFactory::create(input->ordering(), {n, n}, input->dataType(), input->getContext()); //, block.getWorkspace());
|
|
for (int e = 0; e < output->lengthOf(); e++) {
|
|
for (int k = e * n2, row = 0; k < (e + 1) * n2; ++k, ++row) {
|
|
matrix.p(row, input->e<T>(k));
|
|
}
|
|
NDArray det = lup_<T>(&matrix, (NDArray*)nullptr, (NDArray*)nullptr);
|
|
if (det.e<T>(0) != 0.f)
|
|
output->p(e, nd4j::math::nd4j_log<T,T>(nd4j::math::nd4j_abs(det.t<T>(0))));
|
|
}
|
|
|
|
return ND4J_STATUS_OK;
|
|
}
|
|
|
|
BUILD_SINGLE_TEMPLATE(template int logAbsDeterminant_, (NDArray* input, NDArray* output), FLOAT_TYPES);
|
|
|
|
int logAbsDeterminant(nd4j::LaunchContext * context, NDArray* input, NDArray* output) {
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), return logAbsDeterminant_, (input, output), FLOAT_TYPES);
|
|
}
|
|
|
|
template <typename T>
|
|
static int inverse_(NDArray* input, NDArray* output) {
|
|
|
|
auto n = input->sizeAt(-1);
|
|
auto n2 = n * n;
|
|
auto totalCount = output->lengthOf() / n2;
|
|
|
|
output->assign(0.f); // fill up output tensor with zeros
|
|
auto matrix = NDArrayFactory::create('c', {n, n}, DataTypeUtils::fromT<T>(), input->getContext()); //, block.getWorkspace());
|
|
auto compound = NDArrayFactory::create('c', {n, n}, DataTypeUtils::fromT<T>(), input->getContext()); //, block.getWorkspace());
|
|
auto permutation = NDArrayFactory::create('c', {n, n}, DataTypeUtils::fromT<T>(), input->getContext());
|
|
auto lowerMatrix = NDArrayFactory::create('c', {n, n}, DataTypeUtils::fromT<T>(), input->getContext());
|
|
auto upperMatrix = NDArrayFactory::create('c', {n, n}, DataTypeUtils::fromT<T>(), input->getContext());
|
|
|
|
for (int e = 0; e < totalCount; e++) {
|
|
if (e)
|
|
matrix.assign(0.f);
|
|
|
|
for (int k = e * n2, row = 0; k < (e + 1) * n2; k++) {
|
|
matrix.p(row++, input->e<T>(k));
|
|
}
|
|
T det = lup_<T>(&matrix, &compound, &permutation).template e<T>(0);
|
|
|
|
// FIXME: and how this is going to work on float16?
|
|
if (nd4j::math::nd4j_abs<T>(det) < T(0.000001)) {
|
|
nd4j_printf("matrix_inverse: The matrix %i has no inverse due determinant is %lf. Quiting...\n", e, det);
|
|
matrix.printIndexedBuffer("Wrong matrix");
|
|
return ND4J_STATUS_VALIDATION;
|
|
}
|
|
lowerMatrix.setIdentity(); // set up U to identity matrix
|
|
for (int k = 1; k < n; k++) { // and then put all values under main diagonal on to it
|
|
for (int j = 0; j < k; j++)
|
|
lowerMatrix.template t<T>(k, j) = compound.template t<T>(k, j);
|
|
}
|
|
upperMatrix.setIdentity(); // set up U to identity matrix
|
|
for (int k = 0; k < n; k++) { // and then put all values under main diagonal on to it
|
|
for (int j = k; j < n; j++)
|
|
upperMatrix.template t<T>(k, j) = compound.template e<T>(k, j);
|
|
}
|
|
invertUpperMatrix(&upperMatrix, &matrix);
|
|
|
|
invertLowerMatrix(&lowerMatrix, &upperMatrix);
|
|
|
|
nd4j::MmulHelper::mmul(&matrix, &upperMatrix, &compound, 1.0, 0.0);
|
|
nd4j::MmulHelper::mmul(&compound, &permutation, &matrix, 1.0, 0.0);
|
|
for (int k = e * n2, row = 0; k < (e + 1) * n2; k++) {
|
|
output->t<T>(k) = matrix.template t<T>(row++);
|
|
}
|
|
}
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
int inverse(nd4j::LaunchContext * context, NDArray* input, NDArray* output) {
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), return inverse_, (input, output), FLOAT_TYPES);
|
|
}
|
|
|
|
template <typename T>
|
|
static bool checkCholeskyInput_(nd4j::LaunchContext * context, NDArray const* input) {
|
|
//std::unique_ptr<NDArray> matrix(NDArrayFactory::create_('c', {n, n}, input->dataType())); //, block.getWorkspace());
|
|
std::unique_ptr<ResultSet> lastMatrixList(input->allTensorsAlongDimension({input->rankOf() - 2, input->rankOf()-1}));
|
|
for (size_t i = 0; i < lastMatrixList->size(); i++) {
|
|
auto thisMatrix = lastMatrixList->at(i);
|
|
// check for symmetric
|
|
for (Nd4jLong r = 0; r < thisMatrix->rows(); r++)
|
|
for (Nd4jLong c = 0; c < thisMatrix->columns(); c++)
|
|
if (nd4j::math::nd4j_abs(thisMatrix->e<T>(r, c) - lastMatrixList->at(i)->e<T>(c,r)) > T(1.e-6f)) return false;
|
|
|
|
NDArray output = NDArrayFactory::create<T>(0., context);
|
|
if (ND4J_STATUS_OK != determinant(context, thisMatrix, &output)) return false;
|
|
if (output.e<T>(0) <= T(0)) return 0;
|
|
NDArray reversedMatrix(*thisMatrix);
|
|
if (ND4J_STATUS_OK != inverse(context, thisMatrix, &reversedMatrix)) return false;
|
|
if (ND4J_STATUS_OK != determinant(context, &reversedMatrix, &output)) return false;
|
|
if (output.e<T>(0) <= T(0)) return 0;
|
|
|
|
}
|
|
|
|
|
|
return true;
|
|
}
|
|
BUILD_SINGLE_TEMPLATE(template bool checkCholeskyInput_, (nd4j::LaunchContext * context, NDArray const* input), FLOAT_TYPES);
|
|
|
|
bool checkCholeskyInput(nd4j::LaunchContext * context, NDArray const* input) {
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), return checkCholeskyInput_, (context, input), FLOAT_TYPES);
|
|
}
|
|
|
|
template <typename T>
|
|
int cholesky_(NDArray* input, NDArray* output, bool inplace) {
|
|
|
|
auto n = input->sizeAt(-1);
|
|
auto n2 = n * n;
|
|
auto totalCount = output->lengthOf() / n2;
|
|
if (!inplace)
|
|
output->assign(0.f); // fill up output tensor with zeros only inplace=false
|
|
|
|
std::unique_ptr<NDArray> matrix(NDArrayFactory::create_('c', {n, n}, input->dataType(), input->getContext())); //, block.getWorkspace());
|
|
std::unique_ptr<NDArray> lowerMatrix(NDArrayFactory::create_('c',{n, n}, input->dataType(), input->getContext()));
|
|
|
|
for (int e = 0; e < totalCount; e++) {
|
|
|
|
// fill up matrix
|
|
for (int k = e * n2, l = 0; k < (e + 1) * n2; k++) {
|
|
matrix->p(l++, input->e<T>(k));
|
|
}
|
|
//if (e) // from the second loop need to zero matrix
|
|
lowerMatrix->assign(0.f);
|
|
|
|
for (Nd4jLong col = 0; col < n; col++) {
|
|
for (Nd4jLong row = 0; row < col; row++) {
|
|
T rowSum = 0;
|
|
for (Nd4jLong k = 0; k < row; ++k)
|
|
rowSum += (lowerMatrix->e<T>(col, k) * lowerMatrix->e<T>(row, k));
|
|
lowerMatrix->p(col, row, (matrix->e<T>(row, col) - rowSum) / lowerMatrix->e<double>(row, row));
|
|
}
|
|
T diagonalSum = 0;
|
|
for (Nd4jLong k = 0; k < col; ++k)
|
|
diagonalSum += lowerMatrix->e<T>(col, k) * lowerMatrix->e<T>(col, k);
|
|
lowerMatrix->p(col, col, nd4j::math::nd4j_sqrt<T, T>(matrix->e<T>(col, col) - diagonalSum));
|
|
//nd4j_printf("%i: ", col);
|
|
//lowerMatrix->printIndexedBuffer("Lower matrix");
|
|
}
|
|
for (int k = e * n2, l = 0; k < (e + 1) * n2; k++) {
|
|
output->p(k, lowerMatrix->e<T>(l++));
|
|
}
|
|
}
|
|
|
|
return ND4J_STATUS_OK;
|
|
}
|
|
|
|
int cholesky(nd4j::LaunchContext * context, NDArray* input, NDArray* output, bool inplace) {
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), return cholesky_, (input, output, inplace), FLOAT_TYPES);
|
|
}
|
|
|
|
template <typename T>
|
|
int logdetFunctor_(NDArray* input, NDArray* output) {
|
|
std::unique_ptr<NDArray> tempOutput(input->dup());
|
|
int res = cholesky_<T>(input, tempOutput.get(), false);
|
|
if (res != ND4J_STATUS_OK)
|
|
return res;
|
|
auto n = input->sizeAt(-1);
|
|
auto totalCount = output->lengthOf();
|
|
std::vector<T> d(n);
|
|
std::unique_ptr<ResultSet> matricies(tempOutput->allTensorsAlongDimension({input->rankOf()-2, input->rankOf() - 1}));
|
|
std::unique_ptr<ResultSet> inputMatricies(input->allTensorsAlongDimension({input->rankOf()-2, input->rankOf() - 1}));
|
|
for (Nd4jLong e = 0; e < totalCount; e++) {
|
|
|
|
//d[0] = inputMatricies->at(e)->t<T>(0, 0);
|
|
for (size_t i = 0; i < n; ++i) {
|
|
output->t<T>(e) += nd4j::math::nd4j_log<T,T>(nd4j::math::nd4j_pow<T,T,T>(matricies->at(e)->t<T>(i, i), T(2)));
|
|
}
|
|
}
|
|
return ND4J_STATUS_OK;
|
|
}
|
|
|
|
int logdetFunctor(nd4j::LaunchContext * context, NDArray* input, NDArray* output) {
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), return logdetFunctor_, (input, output), FLOAT_TYPES);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|