* fix pad javadoc and @see links. (#72) Signed-off-by: Robert Altena <Rob@Ra-ai.com> * [WIP] More fixes (#73) * special tests for ConstantTadHelper/ConstantShapeHelper Signed-off-by: raver119 <raver119@gmail.com> * release methods for data buffers Signed-off-by: raver119 <raver119@gmail.com> * delete temporary buffer Java side Signed-off-by: raver119 <raver119@gmail.com> * delete temporary buffer Java side Signed-off-by: raver119 <raver119@gmail.com> * delete temporary TadPack C++/Java side (#74) Signed-off-by: raver119 <raver119@gmail.com> * Zoo model TF import test updates (#75) * argLine fix, update compression_gru comment * updated comment for xception * undid but commented argLine change * updated xlnet comment * copyright headers * - new NDArray methods like()/ulike() (#77) - fix for depthwise_conv2d_bp + special test Signed-off-by: raver119 <raver119@gmail.com> * upsampling2d fix CUDA Signed-off-by: raver119 <raver119@gmail.com> * DL4J trace logging (#79) * MLN/CG trace logging for debugging Signed-off-by: AlexDBlack <blacka101@gmail.com> * Tiny tweak Signed-off-by: AlexDBlack <blacka101@gmail.com> * strided_slice_bp shape fn leak fix Signed-off-by: raver119 <raver119@gmail.com> * SameDiff fixes and naming (#78) * remove SDVariable inplace methods * import methods * npe fix in OpVal * removed SameDiff inplace ops from tests * Naming updates, moved to centralized methods in SameDiff, should use op_#:# for everything * quick fixes * javadoc * SDVariable eval with placeholders * use regex match * better matching * initial commit Signed-off-by: raver119 <raver119@gmail.com> * initial commit Signed-off-by: raver119 <raver119@gmail.com> * fix javadoc. (#76) * fix javadoc. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * replace most @see with @link s. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * 4 additional tests Signed-off-by: raver119 <raver119@gmail.com> * launch context reorganization Signed-off-by: raver119 <raver119@gmail.com> * LaunchContext reorganization Signed-off-by: raver119 <raver119@gmail.com> * per-device LaunchContext Signed-off-by: raver119 <raver119@gmail.com> * Various DL4J/ND4J fixes (#81) * #7954 Force refresh of UI when switching tabs on overview page Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8017 Concurrent modification exception (synchronize) fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8033 Don't initialize updater in middle of writing memory crash dump Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8208 Fix shape checks for ND4J int[] creator methods Signed-off-by: AlexDBlack <blacka101@gmail.com> * #6385 #7992 Keras import naming fixes + cleanup Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8016 Upsampling3D - add NDHWC format support Signed-off-by: AlexDBlack <blacka101@gmail.com> * ContextBuffers as separate entity Signed-off-by: raver119 <raver119@gmail.com> * Refactor NativeOps.h to export C functions * Actually export functions from NativeOps.h * Adapt the Java wrappers in ND4J generated with JavaCPP * Create C wrappers for some of the C++ classes currently used by ND4J * ContextBuffers as separate entity Signed-off-by: raver119 <raver119@gmail.com> * remove duplicate code in createBufferDetached. (#83) Signed-off-by: Robert Altena <Rob@Ra-ai.com> * Keras model import - updater lr fix (#84) * Keras model import - updater lr fix Signed-off-by: eraly <susan.eraly@gmail.com> * Keras model import - updater lr fix, cleanup Signed-off-by: eraly <susan.eraly@gmail.com> * ContextBuffers as separate entity Signed-off-by: raver119 <raver119@gmail.com> * ContextBuffers as separate entity Signed-off-by: raver119 <raver119@gmail.com> * Fix functions of OpaqueVariablesSet * thread-local buffers/affinity Signed-off-by: raver119 <raver119@gmail.com> * thread safety for LaunchContext Signed-off-by: raver119 <raver119@gmail.com> * more of thread safety Signed-off-by: raver119 <raver119@gmail.com> * one more multi threaded test Signed-off-by: raver119 <raver119@gmail.com> * SameDiff Convolution Config validation, better output methods (#82) * Conv Config validation & tests Signed-off-by: Ryan Nett <rnett@skymind.io> * stackOutputs utility method Signed-off-by: Ryan Nett <rnett@skymind.io> * use constructor for validation, support negative kernel sizes (infered from weights) Signed-off-by: Ryan Nett <rnett@skymind.io> * better output methods Signed-off-by: Ryan Nett <rnett@skymind.io> * move output to be with fit and evaluate Signed-off-by: Ryan Nett <rnett@skymind.io> * fixes Signed-off-by: Ryan Nett <rnett@skymind.io> * more fixes Signed-off-by: Ryan Nett <rnett@skymind.io> * refactor duplicate code from pad methods. (#86) * refactor duplicate code from pad methods. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * replace switch with if. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * Various ND4J/DL4J fixes and improvements (#87) * Reshape and reallocate - small fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * Reshape and reallocate - small fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * #6488 ElementWiseVertex broadcast support Signed-off-by: AlexDBlack <blacka101@gmail.com> * Constructors and broadcast supported it Transforms.max/min Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8054 ElementWiseVertex now supports broadcast inputs Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8057 Nd4j.create overload dtype fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7551 ND4J Shape validation fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] Numpy boolean import (#91) * numpy bool type Signed-off-by: raver119 <raver119@gmail.com> * numpy bool java side Signed-off-by: raver119 <raver119@gmail.com> * remove create method with unused parameter. (#89) * remove create method with unused parameter. * removed more unused methods. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * removing more unused code. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * last removal of unused code. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * remove createSparse methods. (#92) Signed-off-by: Robert Altena <Rob@Ra-ai.com> * Various ND4J/DL4J fixes (#90) * Deprecate Old*Op instances Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8063 #8054 Broadcast exceptions + cleanup inplace ops Signed-off-by: AlexDBlack <blacka101@gmail.com> * Small fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Remove bad test condition Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7993 Fix shape function issue in crop_and_resize op Signed-off-by: AlexDBlack <blacka101@gmail.com> * DL4J SameDiff lambda layer fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8029 Fix for pnorm backprop math Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8038 Fix Op profiler NaN/Inf triggering + add tests (#93) Signed-off-by: AlexDBlack <blacka101@gmail.com> * createUninitializedDetached refactoring. (#94) * wip * update interface, add null implementations. * Breaking one test in a weird way. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * createUninitializedDetached refactored. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * cuda build fix for issues introduced by recent refactoring Signed-off-by: raver119 <raver119@gmail.com> * [WIP] More of CUDA (#95) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * Implementation of hashcode cuda helper. Working edition. * Fixed parallel test input arangements. * Fixed tests for hashcode op. * Fixed shape calculation for image:crop_and_resize op and test. * NativeOps tests. Initial test suite. * Added tests for indexReduce methods. * Added test on execBroadcast with NDArray as dimensions. * Added test on execBroadcastBool with NDArray as dimensions. * Added tests on execPairwiseTransform and execPairwiseTransofrmBool. * Added tests for execReduce with scalar results. * Added reduce tests for non-empty dims array. * Added tests for reduce3. * Added tests for execScalar. * Added tests for execSummaryStats. * - provide cpu/cuda code for batch_to_space - testing it Signed-off-by: Yurii <yurii@skymind.io> * - remove old test for batch_to_space (had wrong format and numbers were not checked) Signed-off-by: Yurii <yurii@skymind.io> * Fixed complilation errors with test. * Added test for execTransformFloat. * Added test for execTransformSame. * Added test for execTransformBool. * Added test for execTransformStrict. * Added tests for execScalar/execScalarBool with TADs. * Added test for flatten. * - provide cpu/cuda code for space_to_Batch operaion Signed-off-by: Yurii <yurii@skymind.io> * Added test for concat. * comment unnecessary stuff in s_t_b Signed-off-by: Yurii <yurii@skymind.io> * Added test for specialConcat. * Added tests for memcpy/set routines. * Fixed pullRow cuda test. * Added pullRow test. * Added average test. * - correct typo in NDArray::applyPairwiseTransform(nd4j::pairwise::BoolOps op...) Signed-off-by: Yurii <yurii@skymind.io> * - debugging and fixing cuda tests in JavaInteropTests file Signed-off-by: Yurii <yurii@skymind.io> * - correct some tests Signed-off-by: Yurii <yurii@skymind.io> * Added test for shuffle. * Fixed ops declarations. * Restored omp and added shuffle test. * Added convertTypes test. * Added tests for execRandom. Eliminated usage of RandomBuffer with NativeOps. * Added sort tests. * Added tests for execCustomOp. * - further debuging and fixing tests terminated with crash Signed-off-by: Yurii <yurii@skymind.io> * Added tests for calculateOutputShapes. * Addded Benchmarks test. * Commented benchmark tests. * change assertion Signed-off-by: raver119 <raver119@gmail.com> * Added tests for apply_sgd op. Added cpu helper for that op. * Implement cuda helper for aplly_sgd op. Fixed tests for NativeOps. * Added test for assign broadcastable. * Added tests for assign_bp op. * Added tests for axpy op. * - assign/execScalar/execTransformAny signature change - minor test fix Signed-off-by: raver119 <raver119@gmail.com> * Fixed axpy op. * meh Signed-off-by: raver119 <raver119@gmail.com> * - fix tests for nativeOps::concat Signed-off-by: Yurii <yurii@skymind.io> * sequential transform/scalar Signed-off-by: raver119 <raver119@gmail.com> * allow nested parallelism Signed-off-by: raver119 <raver119@gmail.com> * assign_bp leak fix Signed-off-by: raver119 <raver119@gmail.com> * block setRNG fix Signed-off-by: raver119 <raver119@gmail.com> * enable parallelism by default Signed-off-by: raver119 <raver119@gmail.com> * enable nested parallelism by default Signed-off-by: raver119 <raver119@gmail.com> * Added cuda implementation for row_count helper. * Added implementation for tnse gains op helper. * - take into account possible situations when input arrays are empty in reduce_ cuda stuff Signed-off-by: Yurii <yurii@skymind.io> * Implemented tsne/edge_forces op cuda-based helper. Parallelized cpu-based helper for edge_forces. * Added kernel for tsne/symmetrized op heleper. * Implementation of tsne/symmetrized op cuda helper. Working edition. * Eliminated waste printfs. * Added test for broadcastgradientargs op. * host-only fallback for empty reduce float Signed-off-by: raver119 <raver119@gmail.com> * - some tests fixes Signed-off-by: Yurii <yurii@skymind.io> * - correct the rest of reduce_ stuff Signed-off-by: Yurii <yurii@skymind.io> * - further correction of reduce_ stuff Signed-off-by: Yurii <yurii@skymind.io> * Added test for Cbow op. Also added cuda implementation for cbow helpers. * - improve code of stack operation for scalar case Signed-off-by: Yurii <yurii@skymind.io> * - provide cuda kernel for gatherND operation Signed-off-by: Yurii <yurii@skymind.io> * Implementation of cbow helpers with cuda kernels. * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * - further correction of cuda stuff Signed-off-by: Yurii <yurii@skymind.io> * Implementatation of cbow op helper with cuda kernels. Working edition. * Skip random testing for cudablas case. * lstmBlockCell context fix Signed-off-by: raver119 <raver119@gmail.com> * Added tests for ELU and ELU_BP ops. * Added tests for eq_scalar, gt_scalar, gte_scalar and lte_scalar ops. * Added tests for neq_scalar. * Added test for noop. * - further work on clipbynorm_bp Signed-off-by: Yurii <yurii@skymind.io> * - get rid of concat op call, use instead direct concat helper call Signed-off-by: Yurii <yurii@skymind.io> * lstmBlockCell context fix Signed-off-by: raver119 <raver119@gmail.com> * Added tests for lrelu and lrelu_bp. * Added tests for selu and selu_bp. * Fixed lrelu derivative helpers. * - some corrections in lstm Signed-off-by: Yurii <yurii@skymind.io> * operator * result shape fix Signed-off-by: raver119 <raver119@gmail.com> * - correct typo in lstmCell Signed-off-by: Yurii <yurii@skymind.io> * few tests fixed Signed-off-by: raver119 <raver119@gmail.com> * CUDA inverse broadcast bool fix Signed-off-by: raver119 <raver119@gmail.com> * disable MMAP test for CUDA Signed-off-by: raver119 <raver119@gmail.com> * BooleanOp syncToDevice Signed-off-by: raver119 <raver119@gmail.com> * meh Signed-off-by: raver119 <raver119@gmail.com> * additional data types for im2col/col2im Signed-off-by: raver119 <raver119@gmail.com> * Added test for firas_sparse op. * one more RandomBuffer test excluded Signed-off-by: raver119 <raver119@gmail.com> * Added tests for flatten op. * Added test for Floor op. * bunch of tests fixed Signed-off-by: raver119 <raver119@gmail.com> * mmulDot tests fixed Signed-off-by: raver119 <raver119@gmail.com> * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * Implemented floordiv_bp op and tests. * Fixed scalar case with cuda implementation for bds. * - work on cuda kernel for clip_by_norm backprop op is completed Signed-off-by: Yurii <yurii@skymind.io> * Eliminate cbow crach. * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * Eliminated abortion with batched nlp test. * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * Fixed shared flag initializing. * disabled bunch of cpu workspaces tests Signed-off-by: raver119 <raver119@gmail.com> * scalar operators fix: missing registerSpecialUse call Signed-off-by: raver119 <raver119@gmail.com> * Fixed logdet for cuda and tests. * - correct clipBynorm_bp Signed-off-by: Yurii <yurii@skymind.io> * Fixed crop_and_resize shape datatype. * - correct some mmul tests Signed-off-by: Yurii <yurii@skymind.io> * build fix Signed-off-by: raver119 <raver119@gmail.com> * exclude two methods for JNI Signed-off-by: raver119 <raver119@gmail.com> * exclude two methods for JNI Signed-off-by: raver119 <raver119@gmail.com> * exclude two methods for JNI (#97) Signed-off-by: raver119 <raver119@gmail.com> * temporary stack fix Signed-off-by: raver119 <raver119@gmail.com> * round robin affinity test Signed-off-by: raver119 <raver119@gmail.com> * get rid of legacy CudaContext methods Signed-off-by: raver119 <raver119@gmail.com> * get rid of legacy ContextPool classes/methods Signed-off-by: raver119 <raver119@gmail.com> * one legacy test removed Signed-off-by: raver119 <raver119@gmail.com> * few more fields rearranged Signed-off-by: raver119 <raver119@gmail.com> * OpaqueLaunchContext Signed-off-by: raver119 <raver119@gmail.com> * OpaqueLaunchContext++ Signed-off-by: raver119 <raver119@gmail.com> * more of OpaqueLaunchContext methods Signed-off-by: raver119 <raver119@gmail.com> * LaunchContext -> CudaContext Signed-off-by: raver119 <raver119@gmail.com> * AffinityManger changes Signed-off-by: raver119 <raver119@gmail.com> * AffinityManger changes Signed-off-by: raver119 <raver119@gmail.com> * cusolver handles Signed-off-by: raver119 <raver119@gmail.com> * typo Signed-off-by: raver119 <raver119@gmail.com> * cusolver method Signed-off-by: raver119 <raver119@gmail.com> * cusolver handle propagated Signed-off-by: raver119 <raver119@gmail.com> * blas/solver handles Signed-off-by: raver119 <raver119@gmail.com> * one more test Signed-off-by: raver119 <raver119@gmail.com> * legacy concat implementations replaced with new CustomOp Signed-off-by: raver119 <raver119@gmail.com> * one more test Signed-off-by: raver119 <raver119@gmail.com> * concat now uses way more blocks Signed-off-by: raver119 <raver119@gmail.com> * print Signed-off-by: raver119 <raver119@gmail.com> * no more triple template mmul Signed-off-by: raver119 <raver119@gmail.com> * bunch of kernels have dtypes reconsidered Signed-off-by: raver119 <raver119@gmail.com> * bunch of kernels have dtypes reconsidered Signed-off-by: raver119 <raver119@gmail.com> * bitonic sort reorganized Signed-off-by: raver119 <raver119@gmail.com> * bunch of cpu stuff removed from cuda scope Signed-off-by: raver119 <raver119@gmail.com> * bunch of cpu stuff removed from cuda scope Signed-off-by: raver119 <raver119@gmail.com> * type conversions moved to generic impl Signed-off-by: raver119 <raver119@gmail.com> * cpu data types pass Signed-off-by: raver119 <raver119@gmail.com> * non_max_suppression Signed-off-by: raver119 <raver119@gmail.com> * sortByValue fix Signed-off-by: raver119 <raver119@gmail.com> * ignore all mixed datatype tests for mmul Signed-off-by: raver119 <raver119@gmail.com> * special handling of OpProfiler exceptions Signed-off-by: raver119 <raver119@gmail.com> * - one failing concat test in cpp - Nd4j.tile now uses op internally Signed-off-by: raver119 <raver119@gmail.com> * get back dtype exception for legacy arrays deserialization Signed-off-by: raver119 <raver119@gmail.com>
362 lines
15 KiB
C++
362 lines
15 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author GS <sgazeos@gmail.com>
|
|
//
|
|
|
|
#include <ops/declarable/helpers/legacy_helpers.h>
|
|
#include <NDArrayFactory.h>
|
|
|
|
namespace nd4j {
|
|
namespace ops {
|
|
namespace helpers {
|
|
template <typename T>
|
|
static void reluDerivative__(NDArray* theFirst, NDArray* theSecond) {
|
|
auto functor = LAMBDA_TT(x, y){
|
|
return x > (T) 0.f ? y : T(0.f);
|
|
};
|
|
|
|
theFirst->applyPairwiseLambda<T>(theSecond, functor, nullptr);
|
|
}
|
|
|
|
void reluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond) {
|
|
BUILD_SINGLE_SELECTOR(theFirst->dataType(), reluDerivative__, (theFirst, theSecond), FLOAT_TYPES);
|
|
}
|
|
|
|
template <typename T>
|
|
static void reluDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
|
|
auto functor = LAMBDA_TT(x, y){
|
|
return x > (T)0.f ? y : T(0.f);
|
|
};
|
|
|
|
input->applyPairwiseLambda<T>(epsilon, functor, output);
|
|
}
|
|
|
|
void reluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
|
|
BUILD_SINGLE_SELECTOR(theFirst->dataType(), reluDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
|
|
}
|
|
|
|
template <typename T>
|
|
static void relu6Derivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
|
|
auto functor = LAMBDA_TT(x, y){
|
|
return x > (T)0.f && x < (T)6.f? y : T(0.f);
|
|
};
|
|
|
|
input->applyPairwiseLambda<T>(epsilon, functor, output);
|
|
}
|
|
|
|
void relu6Derivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
|
|
BUILD_SINGLE_SELECTOR(theFirst->dataType(), relu6Derivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
|
|
}
|
|
|
|
template <typename T>
|
|
static void leakyReluDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
|
|
auto functor = LAMBDA_TT(x, y){
|
|
return x >= (T)0.f? y : T(0.f);
|
|
};
|
|
|
|
input->applyPairwiseLambda<T>(epsilon, functor, output);
|
|
}
|
|
|
|
void leakyReluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
|
|
BUILD_SINGLE_SELECTOR(theFirst->dataType(), leakyReluDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
|
|
}
|
|
|
|
template <typename T>
|
|
static void eluDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
|
|
auto functor = LAMBDA_TT(x, y){
|
|
return y * nd4j::math::nd4j_eluderivative<T,T>(x);
|
|
};
|
|
|
|
input->applyPairwiseLambda<T>(epsilon, functor, output);
|
|
}
|
|
|
|
void eluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
|
|
BUILD_SINGLE_SELECTOR(theFirst->dataType(), eluDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
|
|
}
|
|
|
|
template <typename T>
|
|
static void seluDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
|
|
auto functor = LAMBDA_TT(x, y){
|
|
return y * simdOps::SELUDerivative<T>::op(x, nullptr);
|
|
};
|
|
|
|
input->applyPairwiseLambda<T>(epsilon, functor, output);
|
|
}
|
|
|
|
void seluDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
|
|
BUILD_SINGLE_SELECTOR(theFirst->dataType(), seluDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
|
|
}
|
|
|
|
template <typename T>
|
|
static void cubeDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
|
|
auto functor = LAMBDA_TT(x, y){
|
|
return y * (3 * x * x);
|
|
};
|
|
|
|
input->applyPairwiseLambda<T>(epsilon, functor, output);
|
|
}
|
|
|
|
void cubeDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
|
|
BUILD_SINGLE_SELECTOR(theFirst->dataType(), cubeDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
|
|
}
|
|
|
|
//return (x >= X(0.f) ? y: -y);
|
|
template <typename T>
|
|
static void reduceNorm1_(NDArray* input, NDArray* epsilon, NDArray* output) {
|
|
auto functor = LAMBDA_TT(x, y){
|
|
return x > T(0.f)? y : -y;
|
|
};
|
|
|
|
input->applyPairwiseLambda<T>(epsilon, functor, output);
|
|
}
|
|
|
|
void reduceNorm1(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
|
|
BUILD_SINGLE_SELECTOR(theFirst->dataType(), reduceNorm1_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
template <typename T>
|
|
static void sigmCrossEntropy_(NDArray* logits, NDArray* labels, NDArray* output) {
|
|
auto functor = LAMBDA_TT(x, y){
|
|
return nd4j::math::nd4j_max<T>(x, (T)0.f) - x * y + nd4j::math::nd4j_log<T,T>((T)1.f + nd4j::math::nd4j_exp<T,T>(-nd4j::math::nd4j_abs(x)));
|
|
};
|
|
|
|
logits->applyPairwiseLambda<T>(labels, functor, output);
|
|
}
|
|
|
|
void sigmCrossEntropy(nd4j::LaunchContext * context, NDArray* logits, NDArray* labels, NDArray* output) {
|
|
BUILD_SINGLE_SELECTOR(logits->dataType(), sigmCrossEntropy_, (logits, labels, output), FLOAT_TYPES);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
template <typename T>
|
|
static void sigmCrossEntropyGrad_(NDArray* logits, NDArray* labels, NDArray* output) {
|
|
// 1 - labels - 1 / (1 + exp(logits))
|
|
auto functor = LAMBDA_TT(x, y) {
|
|
if(x <= 0)
|
|
return static_cast<T>(1.) - y - static_cast<T>(1.) / (static_cast<T>(1.) + nd4j::math::nd4j_exp<T,T>(x));
|
|
auto e = nd4j::math::nd4j_exp<T,T>(-x);
|
|
return static_cast<T>(1.) - y - e / (static_cast<T>(1.) + e);
|
|
};
|
|
|
|
logits->applyPairwiseLambda<T>(labels, functor, output);
|
|
}
|
|
|
|
void sigmCrossEntropyGrad(nd4j::LaunchContext * context, NDArray* logits, NDArray* labels, NDArray* output) {
|
|
BUILD_SINGLE_SELECTOR(logits->dataType(), sigmCrossEntropyGrad_, (logits, labels, output), FLOAT_TYPES);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
template <typename T>
|
|
static void tanhDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
|
|
auto functor = LAMBDA_TT(x, y){
|
|
T th = nd4j::math::nd4j_tanh<T,T>(x);
|
|
return y * ((T)1.0f - (th * th));
|
|
};
|
|
|
|
input->applyPairwiseLambda<T>(epsilon, functor, output);
|
|
}
|
|
|
|
void tanhDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
|
|
BUILD_SINGLE_SELECTOR(theFirst->dataType(), tanhDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
|
|
}
|
|
|
|
// return static_cast<X>(d2) * simdOps::HardTanhDerivative<X>::op(d1, nullptr);
|
|
template <typename T>
|
|
static void hardTanhDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
|
|
auto functor = LAMBDA_TT(x, y){
|
|
T th = nd4j::math::nd4j_tanh<T,T>(x);
|
|
return y * simdOps::HardTanhDerivative<T>::op(x, nullptr);
|
|
};
|
|
|
|
input->applyPairwiseLambda<T>(epsilon, functor, output);
|
|
}
|
|
|
|
void hardTanhDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
|
|
BUILD_SINGLE_SELECTOR(theFirst->dataType(), hardTanhDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
|
|
}
|
|
|
|
template <typename T>
|
|
static void rationalTanhDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
|
|
auto functor = LAMBDA_TT(x, y){
|
|
return y * simdOps::RationalTanhDerivative<T>::op(x, nullptr);
|
|
};
|
|
|
|
input->applyPairwiseLambda<T>(epsilon, functor, output);
|
|
}
|
|
|
|
void rationalTanhDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
|
|
BUILD_SINGLE_SELECTOR(theFirst->dataType(), rationalTanhDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
|
|
}
|
|
|
|
template <typename T>
|
|
static void rectifiedTanhDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
|
|
auto functor = LAMBDA_TT(x, y){
|
|
return x > (T) 0.0f ? y * (nd4j::math::nd4j_tanhderivative<T,T>(x)) : (T) 0.0f;
|
|
};
|
|
|
|
input->applyPairwiseLambda<T>(epsilon, functor, output);
|
|
}
|
|
|
|
void rectifiedTanhDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
|
|
BUILD_SINGLE_SELECTOR(theFirst->dataType(), rectifiedTanhDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
|
|
}
|
|
|
|
// X f = (X) 1.0f + nd4j::math::nd4j_abs<X>(d1);
|
|
// return (X) d2 * ((X) 1.0f / (f * f));
|
|
|
|
template <typename T>
|
|
static void softSignDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
|
|
auto functor = LAMBDA_TT(x, y){
|
|
T ss = (T)1.f + nd4j::math::nd4j_abs<T>(x);
|
|
return y * ((T) 1.0f / (ss * ss));
|
|
};
|
|
|
|
input->applyPairwiseLambda<T>(epsilon, functor, output);
|
|
}
|
|
|
|
void softSignDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
|
|
BUILD_SINGLE_SELECTOR(theFirst->dataType(), softSignDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
|
|
}
|
|
|
|
template <typename T>
|
|
static void softPlusDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
|
|
auto functor = LAMBDA_TT(x, y){
|
|
T p = nd4j::math::nd4j_pow<T, T, T>(static_cast<T>(M_E), x);
|
|
return y * (p / (p + 1.));
|
|
};
|
|
|
|
input->applyPairwiseLambda<T>(epsilon, functor, output);
|
|
}
|
|
|
|
void softPlusDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
|
|
BUILD_SINGLE_SELECTOR(theFirst->dataType(), softPlusDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
|
|
}
|
|
///
|
|
/// \param theFirst
|
|
/// \param theSecond
|
|
/// \param theOutput
|
|
template <typename T>
|
|
static void sigmoidDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
|
|
auto functor = LAMBDA_TT(x, y){
|
|
T s = nd4j::math::nd4j_sigmoid<T,T>(x);
|
|
return y * (s * ((T) 1.0f - s));
|
|
};
|
|
|
|
input->applyPairwiseLambda<T>(epsilon, functor, output);
|
|
}
|
|
|
|
void sigmoidDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
|
|
BUILD_SINGLE_SELECTOR(theFirst->dataType(), sigmoidDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
|
|
}
|
|
|
|
template <typename T>
|
|
static void hardSigmoidDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) {
|
|
auto functor = LAMBDA_TT(x, y){
|
|
return y * simdOps::HardSigmoidDerivative<T>::op(x, nullptr);
|
|
};
|
|
|
|
input->applyPairwiseLambda<T>(epsilon, functor, output);
|
|
}
|
|
|
|
void hardSigmoidDerivative(nd4j::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) {
|
|
BUILD_SINGLE_SELECTOR(theFirst->dataType(), hardSigmoidDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES);
|
|
}
|
|
|
|
template <typename T>
|
|
static void logSumExp_(NDArray* input, NDArray* axis, NDArray* output) {
|
|
// reduce along axis with
|
|
std::unique_ptr<NDArray> tempInput(input->dup());
|
|
input->applyTransform(transform::Exp, tempInput.get());
|
|
std::vector<int> axisVector;
|
|
if (axis != nullptr) {
|
|
axisVector.resize(axis->lengthOf());
|
|
for (size_t i = 0; i < axisVector.size(); ++i)
|
|
axisVector[i] = axis->e<int>(i);
|
|
}
|
|
tempInput->reduceAlongDimension(reduce::Sum, output, axisVector);
|
|
output->applyTransform(transform::Log, nullptr, nullptr);
|
|
}
|
|
|
|
template <typename T>
|
|
static void logSumExp_(NDArray* input, NDArray* subtrah, NDArray* axis, NDArray* output) {
|
|
// reduce along axis with
|
|
std::unique_ptr<NDArray> tempInput(input->dup());
|
|
input->applyPairwiseTransform(pairwise::Subtract, subtrah, tempInput.get(), nullptr);
|
|
tempInput->applyTransform(transform::Exp, nullptr, nullptr);
|
|
|
|
std::vector<int> axisVector;
|
|
if (axis != nullptr) {
|
|
axisVector.resize(axis->lengthOf());
|
|
for (size_t i = 0; i < axisVector.size(); ++i)
|
|
axisVector[i] = axis->e<int>(i);
|
|
}
|
|
tempInput->reduceAlongDimension(reduce::Sum, output, axisVector);
|
|
output->applyTransform(transform::Log, nullptr, nullptr);
|
|
}
|
|
|
|
void logSumExp(nd4j::LaunchContext * context, NDArray* input, NDArray* axis, NDArray* output) {
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), logSumExp_, (input, axis, output), FLOAT_TYPES);
|
|
}
|
|
|
|
void logSumExp(nd4j::LaunchContext * context, NDArray* input, NDArray* subtrah, NDArray* axis, NDArray* output) {
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), logSumExp_, (input, subtrah, axis, output), FLOAT_TYPES);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template <typename T>
|
|
static void weightedCrossEntropyWithLogitsFunctor_(NDArray const* targets, NDArray const* input, NDArray const* weights, NDArray* output) {
|
|
|
|
T posWeight = weights->e<T>(0);
|
|
|
|
auto mainRoutineT1 = LAMBDA_TT(_x, _z, posWeight) {
|
|
T targetWeight = (1. + (posWeight - (T)1.f) * _z);
|
|
return (1. - _z) * _x +
|
|
targetWeight * (nd4j::math::nd4j_log<T,T>((T)1.f + nd4j::math::nd4j_exp<T,T>(-nd4j::math::nd4j_abs(_x))) +
|
|
nd4j::math::nd4j_max(-_x, T(0.f))
|
|
);
|
|
};
|
|
|
|
auto mainRoutineT2 = LAMBDA_TTT(_x, _z, _w) {
|
|
return (((T)1.0 - _z) * _x) +
|
|
_w * (nd4j::math::nd4j_log<T,T>(T(1.) + nd4j::math::nd4j_exp<T,T>(-nd4j::math::nd4j_abs(_x))) +
|
|
nd4j::math::nd4j_max(-_x, T(0.f)));
|
|
};
|
|
|
|
|
|
if (weights->isScalar()) {
|
|
const_cast<NDArray*>(input)->applyPairwiseLambda<T>(const_cast<NDArray*>(targets), mainRoutineT1, output);
|
|
}
|
|
else
|
|
{
|
|
std::unique_ptr<NDArray> targetVector(new NDArray(*weights));
|
|
targetVector->applyScalar(scalar::Add, -1.f);
|
|
|
|
std::unique_ptr<NDArray> targetTensor(new NDArray(*targets));
|
|
*targetTensor = (*targetVector * *targetTensor) + T(1.f);
|
|
const_cast<NDArray*>(input)->applyTriplewiseLambda<T>(const_cast<NDArray*>(targets), targetTensor.get(), mainRoutineT2, output);
|
|
}
|
|
}
|
|
|
|
void weightedCrossEntropyWithLogitsFunctor(nd4j::LaunchContext * context, NDArray const* targets, NDArray const* input, NDArray const* weights, NDArray* output) {
|
|
BUILD_SINGLE_SELECTOR(targets->dataType(), weightedCrossEntropyWithLogitsFunctor_, (targets, input, weights, output), FLOAT_TYPES);
|
|
}
|
|
|
|
}
|
|
}
|
|
} |