raver119 98e2814879
Platform helpers (#8216)
* platform helpers draft

Signed-off-by: raver119 <raver119@gmail.com>

* typo

Signed-off-by: raver119 <raver119@gmail.com>

* disable platform cmake

Signed-off-by: raver119 <raver119@gmail.com>

* another draft

Signed-off-by: raver119 <raver119@gmail.com>

* mkldnn convolution refactored

Signed-off-by: raver119 <raver119@gmail.com>

* minor tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* one more safety check

Signed-off-by: raver119 <raver119@gmail.com>

* prototype works

Signed-off-by: raver119 <raver119@gmail.com>

* meh

Signed-off-by: raver119 <raver119@gmail.com>

* force static library mode for mkldnn

Signed-off-by: raver119 <raver119@gmail.com>

* - ismax fix
- experimental arg fix
- don't enforce openblas on Apple hardware

Signed-off-by: raver119 <raver119@gmail.com>

* bunch of small fixes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* declare concurrent

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* - MKLDNN version upgrade to 1.0.2
- avgpool2d/maxpool2d APIs update

Signed-off-by: raver119 <raver119@gmail.com>

* - avgpool2d_bp/maxpool2d_bp APIs update

Signed-off-by: raver119 <raver119@gmail.com>

* - conv2d/batchnorm APIs update

Signed-off-by: raver119 <raver119@gmail.com>

* - lrn/conv2d_bp/conv3d/conv3d_bp APIs update

Signed-off-by: raver119 <raver119@gmail.com>

* all ops converted to MKLDNN 1.x

Signed-off-by: raver119 <raver119@gmail.com>

* bunch of tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* namespace for platform helpers

Signed-off-by: raver119 <raver119@gmail.com>

* make sure platform helpers aren't opimized out

Signed-off-by: raver119 <raver119@gmail.com>

* build cpu_features on x86 systems

Signed-off-by: raver119 <raver119@gmail.com>

* build cpu_features on x86 systems

Signed-off-by: raver119 <raver119@gmail.com>

* more of cpu_features

Signed-off-by: raver119 <raver119@gmail.com>

* - mkldnn removed from java
- cpu_features checks in CpuNDArrayFactory

Signed-off-by: raver119 <raver119@gmail.com>

* F16C definition renamed

Signed-off-by: raver119 <raver119@gmail.com>

* some mkldnn rearrangements

Signed-off-by: raver119 <raver119@gmail.com>

* check supported instructions before doing anything

Signed-off-by: raver119 <raver119@gmail.com>

* typo

Signed-off-by: raver119 <raver119@gmail.com>

* missied impl

Signed-off-by: raver119 <raver119@gmail.com>

* BUILD_PIC option

Signed-off-by: raver119 <raver119@gmail.com>

* conv2d fix

Signed-off-by: raver119 <raver119@gmail.com>

* avgpool3d fix

Signed-off-by: raver119 <raver119@gmail.com>

* avgpool3d_bp fix

Signed-off-by: raver119 <raver119@gmail.com>

* avgpool2d_bp leak fix

Signed-off-by: raver119 <raver119@gmail.com>

* avgpool3d_bp leak fix

Signed-off-by: raver119 <raver119@gmail.com>

* maxpool bp leaks fixed

Signed-off-by: raver119 <raver119@gmail.com>

* printf removed

Signed-off-by: raver119 <raver119@gmail.com>

* batchnorm fix

Signed-off-by: raver119 <raver119@gmail.com>

* AVX warning/error polishing

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* More polish

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Polish

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* remove previous MKL-DNN support layer

Signed-off-by: raver119 <raver119@gmail.com>

* avx2 tweak

Signed-off-by: raver119 <raver119@gmail.com>

* allow static for apple

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* exclude mkldnn in one more place

Signed-off-by: raver119 <raver119@gmail.com>

* exclude mkldnn in one more place

Signed-off-by: raver119 <raver119@gmail.com>

* restore OPENBLAS_PATH use

Signed-off-by: raver119 <raver119@gmail.com>

* add runtime check for avx/avx2 support

Signed-off-by: raver119 <raver119@gmail.com>

* convolution_auto

Signed-off-by: raver119 <raver119@gmail.com>

* Add logic for helper argument

* minor test fix

Signed-off-by: raver119 <raver119@gmail.com>

* few tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* few tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* skip OpTracker props for non-x86 builds

Signed-off-by: raver119 <raver119@gmail.com>

* linux arm isn't x86 :)

Signed-off-by: raver119 <raver119@gmail.com>

* avx-512

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA presets fix

Signed-off-by: raver119 <raver119@gmail.com>

* BUILD_PIC

Signed-off-by: raver119 <raver119@gmail.com>

* prefetchw for avx2

Signed-off-by: raver119 <raver119@gmail.com>

* BUILD_PIC again

Signed-off-by: raver119 <raver119@gmail.com>
2019-09-11 21:50:28 +03:00

166 lines
8.1 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author saudet
// @author raver119@gmail.com
//
#include <ops/declarable/PlatformHelper.h>
#include <ops/declarable/OpRegistrator.h>
#include <platform_boilerplate.h>
#include <helpers/MKLDNNStream.h>
#include "mkldnnUtils.h"
#include <ops/declarable/helpers/convolutions.h>
#include <NDArrayFactory.h>
using namespace mkldnn;
namespace nd4j {
namespace ops {
namespace platforms {
PLATFORM_IMPL(batchnorm_new) {
auto input = INPUT_VARIABLE(0);
auto mean = INPUT_VARIABLE(1);
auto variance = INPUT_VARIABLE(2);
NDArray *gamma = nullptr;
NDArray *beta = nullptr;
auto output = OUTPUT_VARIABLE(0);
const bool applyScale = (bool) INT_ARG(0);
const bool applyOffset = (bool) INT_ARG(1);
const double epsilon = T_ARG(0);
if (applyScale)
gamma = INPUT_VARIABLE(3);
if (applyOffset)
beta = INPUT_VARIABLE(3 + static_cast<int>(applyScale));
std::vector<int> axes;
if (block.numI() > 2)
for (int i = 2; i < block.numI(); ++i)
axes.push_back(INT_ARG(i));
else
axes.push_back(input->rankOf() - 1);
std::vector<Nd4jLong> shape({2, mean->lengthOf()});
NDArray weights = NDArrayFactory::create<float>('c', shape, block.launchContext());
weights({0, 1, 0, 0}).assign(1.0f);
weights({1, 2, 0, 0}).assign(0.0f);
mkldnn_memory_desc_t empty;
mkldnn::memory::desc batchnorm_src_md(empty), batchnorm_dst_md(empty), user_src_md(
empty), user_dst_md(empty);
auto norm_flag = normalization_flags::use_global_stats;
if (applyScale || applyOffset)
norm_flag |= normalization_flags::use_scale_shift;
mkldnnUtils::getMKLDNNMemoryDescBatchNorm(input, nullptr, output,
&batchnorm_src_md, nullptr, &batchnorm_dst_md,
&user_src_md, nullptr, &user_dst_md, axes[0]);
auto batchnorm_desc = batch_normalization_forward::desc(prop_kind::forward_inference, batchnorm_src_md, epsilon, norm_flag);
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
mkldnn::stream stream(engine);
auto batchnorm_prim_desc = batch_normalization_forward::primitive_desc(batchnorm_desc, engine);
auto user_src_memory = mkldnn::memory(user_src_md, engine, input->buffer());
auto user_dst_memory = mkldnn::memory(user_dst_md, engine, output->buffer());
auto batchnorm_mean_memory = mkldnn::memory(batchnorm_prim_desc.mean_desc(), engine,
mean->buffer());
auto batchnorm_variance_memory = mkldnn::memory(batchnorm_prim_desc.variance_desc(), engine,
variance->buffer());
auto batchnorm_src_memory = user_src_memory;
mkldnn::memory m(batchnorm_src_md, engine);
if (m.get_desc() != user_src_memory.get_desc()) {
batchnorm_src_memory = mkldnn::memory(batchnorm_src_md, engine);
reorder(user_src_memory, batchnorm_src_memory).execute(stream, user_src_memory,
batchnorm_src_memory);
}
auto batchnorm_dst_memory = user_dst_memory;
if (batchnorm_prim_desc.dst_desc() != user_dst_memory.get_desc()) {
batchnorm_dst_memory = mkldnn::memory(batchnorm_prim_desc.dst_desc(), engine);
}
if (applyScale || applyOffset) {
if (gamma != nullptr) {
weights({0, 1, 0, 0}).assign(gamma);
}
if (beta != nullptr) {
weights({1, 2, 0, 0}).assign(beta);
}
auto batchnorm_weights_memory = mkldnn::memory(batchnorm_prim_desc.weights_desc(), engine, weights.buffer());
batch_normalization_forward(batchnorm_prim_desc).execute(stream,
{{MKLDNN_ARG_SRC, batchnorm_src_memory},
{MKLDNN_ARG_MEAN, batchnorm_mean_memory},
{MKLDNN_ARG_VARIANCE, batchnorm_variance_memory},
{MKLDNN_ARG_WEIGHTS, batchnorm_weights_memory},
{MKLDNN_ARG_DST, batchnorm_dst_memory}});
} else {
batch_normalization_forward(batchnorm_prim_desc).execute(stream,
{{MKLDNN_ARG_SRC, batchnorm_src_memory},
{MKLDNN_ARG_MEAN, batchnorm_mean_memory},
{MKLDNN_ARG_VARIANCE, batchnorm_variance_memory},
{MKLDNN_ARG_DST, batchnorm_dst_memory}});
}
if (batchnorm_prim_desc.dst_desc() != user_dst_memory.get_desc()) {
reorder(batchnorm_dst_memory, user_dst_memory).execute(stream, batchnorm_dst_memory,
user_dst_memory);
}
stream.wait();
return Status::OK();
}
PLATFORM_CHECK(batchnorm_new) {
// we don't want to use mkldnn if cpu doesn't support avx/avx2
if (::optimalLevel() < 2)
return false;
auto input = INPUT_VARIABLE(0);
auto mean = INPUT_VARIABLE(1);
auto variance = INPUT_VARIABLE(2);
NDArray *gamma = nullptr;
NDArray *beta = nullptr;
auto output = OUTPUT_VARIABLE(0);
const bool applyScale = (bool) INT_ARG(0);
const bool applyOffset = (bool) INT_ARG(1);
const double epsilon = T_ARG(0);
if (applyScale)
gamma = INPUT_VARIABLE(3);
if (applyOffset)
beta = INPUT_VARIABLE(3 + static_cast<int>(applyScale));
std::vector<int> axes;
if (block.numI() > 2)
for (int i = 2; i < block.numI(); ++i)
axes.push_back(INT_ARG(i));
else
axes.push_back(input->rankOf() - 1);
return block.isUseMKLDNN() &&
nd4j::MKLDNNStream::isSupported({input, mean, variance, gamma, beta, output}) &&
axes.size() == 1;
}
}
}
}