444 lines
17 KiB
C++
444 lines
17 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Yurii Shyrma (iuriish@yahoo.com), created on 19.04.2018
|
|
// @author raver119@gmail.com
|
|
//
|
|
|
|
#include <ops/declarable/helpers/activations.h>
|
|
#include <ShapeUtils.h>
|
|
#include <numeric>
|
|
#include <ConstantTadHelper.h>
|
|
#include <execution/Threads.h>
|
|
|
|
namespace nd4j {
|
|
namespace ops {
|
|
namespace helpers {
|
|
|
|
template <typename T>
|
|
static void softMaxForVector_(void *input, Nd4jLong *inShapeInfo, void *output, Nd4jLong *outShapeInfo) {
|
|
|
|
T* inBuff = reinterpret_cast<T *>(input);
|
|
T* outBuff = reinterpret_cast<T *>(output);
|
|
|
|
T max = -DataTypeUtils::max<T>();
|
|
T sum = 0.;
|
|
int inEWS = shape::elementWiseStride(inShapeInfo);
|
|
int outEWS = shape::elementWiseStride(outShapeInfo);
|
|
int length = shape::length(inShapeInfo);
|
|
|
|
if (inEWS >= 1 && outEWS >= 1) {
|
|
|
|
if (inEWS == 1 && outEWS == 1) {
|
|
|
|
for (int i = 0; i < length; i++)
|
|
max = nd4j::math::nd4j_max<T>(max, inBuff[i]);
|
|
|
|
for (int i = 0; i < length; i++) {
|
|
outBuff[i] = nd4j::math::nd4j_exp<T, T>(inBuff[i] - max);
|
|
sum += outBuff[i];
|
|
}
|
|
|
|
PRAGMA_OMP_SIMD
|
|
for (int i = 0; i < length; i++)
|
|
outBuff[i] /= sum;
|
|
}
|
|
else {
|
|
|
|
for (int i = 0; i < length; i++)
|
|
max = nd4j::math::nd4j_max<T>(max, inBuff[i * inEWS]);
|
|
|
|
for (int i = 0; i < length; i++) {
|
|
T r = nd4j::math::nd4j_exp<T, T>(inBuff[i * inEWS] - max);
|
|
outBuff[i * outEWS] = r;
|
|
sum += r;
|
|
}
|
|
|
|
PRAGMA_OMP_SIMD
|
|
for (int i = 0; i < length; i++)
|
|
outBuff[i * outEWS] /= sum;
|
|
}
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
template <typename T>
|
|
void static _softMaxDerivForVector(nd4j::LaunchContext * context, const void *input, const Nd4jLong *inShapeInfo, void *output) {
|
|
|
|
const T* inBuff = reinterpret_cast<const T *>(input);
|
|
T* outBuff = reinterpret_cast<T *>(output);
|
|
|
|
T max = -DataTypeUtils::max<T>();
|
|
T sum = 0.;
|
|
int length = shape::length(inShapeInfo);
|
|
|
|
for (int i = 0; i < length; i++) {
|
|
const Nd4jLong offset = shape::getIndexOffset(i, inShapeInfo);
|
|
max = nd4j::math::nd4j_max<T>(max, inBuff[offset]);
|
|
}
|
|
|
|
for (int i = 0; i < length; i++) {
|
|
const Nd4jLong offset = shape::getIndexOffset(i, inShapeInfo);
|
|
outBuff[offset] = nd4j::math::nd4j_exp<T, T>(inBuff[offset] - max);
|
|
sum += outBuff[offset];
|
|
}
|
|
|
|
for (int i = 0; i < length; i++) {
|
|
const Nd4jLong offset = shape::getIndexOffset(i, inShapeInfo);
|
|
outBuff[offset] /= sum;
|
|
outBuff[offset] *= (1.f - outBuff[offset]); // derivative
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
void softmaxDerivative(nd4j::LaunchContext * context, const NDArray& input, NDArray& output, const int dimension) {
|
|
|
|
const int rank = input.rankOf();
|
|
int temp;
|
|
|
|
if(shape::isCommonVector(input.getShapeInfo(), temp)) {
|
|
|
|
BUILD_SINGLE_SELECTOR(input.dataType(), _softMaxDerivForVector, (context, input.getBuffer(), input.getShapeInfo(), output.buffer()), FLOAT_TYPES);
|
|
}
|
|
else {
|
|
auto maxAlongDim = const_cast<NDArray&>(input).reduceAlongDimension(reduce::Max, {dimension}, true);
|
|
(input - maxAlongDim).applyTransform(transform::Exp, output); // output contains exponents temporarily
|
|
auto sumAlongDim = output.reduceAlongDimension(reduce::Sum, {dimension}, true);
|
|
output /= sumAlongDim;
|
|
output *= (1.f - output); // derivative
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
void softMaxForVector(nd4j::LaunchContext * context, const NDArray& input, NDArray& output) {
|
|
|
|
if(!input.isVector() || !output.isVector())
|
|
throw std::runtime_error("ops::helpers::softMaxForVector function: input and output arrays must be vectors !");
|
|
|
|
auto xType = input.dataType();
|
|
BUILD_SINGLE_SELECTOR(xType, softMaxForVector_, (input.getBuffer(), input.getShapeInfo(), output.buffer(), output.shapeInfo()), FLOAT_TYPES);
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
template <typename T>
|
|
void logSoftMaxForVector_(void *input, Nd4jLong *inShapeInfo, void *output, Nd4jLong *outShapeInfo) {
|
|
auto inBuff = reinterpret_cast<T *>(input);
|
|
auto outBuff = reinterpret_cast<T *>(output);
|
|
|
|
T max = -DataTypeUtils::max<T>();
|
|
T sum = 0;
|
|
|
|
auto inEWS = shape::elementWiseStride(inShapeInfo);
|
|
auto length = shape::length(inShapeInfo);
|
|
|
|
if (inEWS == 1) {
|
|
for (int i = 0; i < length; i++)
|
|
max = nd4j::math::nd4j_max<T>(max, inBuff[i]);
|
|
|
|
PRAGMA_OMP_SIMD_SUM(sum)
|
|
for (int i = 0; i < length; i++) {
|
|
outBuff[i] = nd4j::math::nd4j_exp<T,T>(inBuff[i] - max);
|
|
sum += outBuff[i];
|
|
}
|
|
|
|
PRAGMA_OMP_SIMD
|
|
for (int i = 0; i < length; i++) {
|
|
outBuff[i] /= sum;
|
|
outBuff[i] = nd4j::math::nd4j_log<T,T>(outBuff[i]);
|
|
}
|
|
}
|
|
else if (inEWS > 1) {
|
|
|
|
PRAGMA_OMP_SIMD_MAX(max)
|
|
for (int i = 0; i < length; i++)
|
|
max = nd4j::math::nd4j_max<T>(max, inBuff[i * inEWS]);
|
|
|
|
PRAGMA_OMP_SIMD_SUM(sum)
|
|
for (int i = 0; i < length; i++) {
|
|
outBuff[i * inEWS] = nd4j::math::nd4j_exp<T,T>(inBuff[i * inEWS] - max);
|
|
sum += outBuff[i * inEWS];
|
|
}
|
|
|
|
PRAGMA_OMP_SIMD
|
|
for (int i = 0; i < length; i++) {
|
|
outBuff[i * inEWS] /= sum;
|
|
outBuff[i * inEWS] = nd4j::math::nd4j_log<T, T>(outBuff[i * inEWS]);
|
|
}
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
void logSoftMaxForVector(nd4j::LaunchContext * context, const NDArray& input, NDArray& output) {
|
|
|
|
if(!input.isVector() || !output.isVector())
|
|
throw std::runtime_error("ops::helpers::logSoftMaxForVector function input and output arrays must be vectors !");
|
|
|
|
auto xType = input.dataType();
|
|
BUILD_SINGLE_SELECTOR(xType, logSoftMaxForVector_, (input.getBuffer(), input.getShapeInfo(), output.buffer(), output.shapeInfo()), FLOAT_TYPES);
|
|
}
|
|
|
|
template <typename T>
|
|
void softmax_loop(T *input, T *output, Nd4jLong *offsets, Nd4jLong numOfSubArrs, uint32_t tadLen);
|
|
|
|
template <>
|
|
FORCEINLINE void softmax_loop(float *input, float *output, Nd4jLong *offsets, Nd4jLong numOfSubArrs, uint32_t tadLen) {
|
|
auto func = PRAGMA_THREADS_FOR {
|
|
for (auto i = start; i < stop; i++) {
|
|
auto inBuff = input + offsets[i];
|
|
auto outBuff = output + offsets[i];
|
|
|
|
float max = -DataTypeUtils::max<float>();
|
|
float sum = 0.f;
|
|
|
|
#pragma omp simd reduction(max:max)
|
|
for (uint j = 0; j < tadLen; ++j)
|
|
max = nd4j::math::nd4j_max<float>(max, inBuff[j]);
|
|
|
|
#pragma omp simd reduction(+:sum)
|
|
for (uint j = 0; j < tadLen; ++j) {
|
|
float temp = nd4j::math::nd4j_exp<float, float>(inBuff[j] - max);
|
|
outBuff[j] = temp;
|
|
sum += temp;
|
|
}
|
|
|
|
#pragma omp simd
|
|
for (uint j = 0; j < tadLen; ++j)
|
|
outBuff[j] /= sum;
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_tad(func,0, numOfSubArrs);
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
FORCEINLINE void softmax_loop(T *input, T *output, Nd4jLong *offsets, Nd4jLong numOfSubArrs, uint32_t tadLen) {
|
|
auto func = PRAGMA_THREADS_FOR {
|
|
for (auto i = start; i < stop; i++) {
|
|
auto inBuff = input + offsets[i];
|
|
auto outBuff = output + offsets[i];
|
|
|
|
T max = -DataTypeUtils::max<T>();
|
|
T sum(0.f);
|
|
|
|
#pragma omp simd reduction(maxT:max)
|
|
for (uint j = 0; j < tadLen; ++j)
|
|
max = nd4j::math::nd4j_max<T>(max, inBuff[j]);
|
|
|
|
#pragma omp simd reduction(sumT:sum)
|
|
for (uint j = 0; j < tadLen; ++j) {
|
|
T temp = nd4j::math::nd4j_exp<T, T>(inBuff[j] - max);
|
|
outBuff[j] = temp;
|
|
sum += temp;
|
|
}
|
|
|
|
#pragma omp simd
|
|
for (uint j = 0; j < tadLen; ++j)
|
|
outBuff[j] /= sum;
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_tad(func,0, numOfSubArrs);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template <typename T>
|
|
static void softmax_(nd4j::LaunchContext * context, const NDArray& input, NDArray& output, const int dimension) {
|
|
|
|
const int rank = input.rankOf();
|
|
|
|
if(input.isVector()) {
|
|
|
|
if(rank == 1 || input.sizeAt(dimension) != 1)
|
|
softMaxForVector_<T>(input.getBuffer(), input.getShapeInfo(), output.buffer(), output.getShapeInfo());
|
|
else
|
|
output = 1.;
|
|
}
|
|
else if(input.isSameShapeStrict(output)) {
|
|
|
|
TadPack tadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input.getShapeInfo(), dimension);
|
|
Nd4jLong* tadShapeInfo = tadPack.primaryShapeInfo();
|
|
Nd4jLong* tadOffsets = tadPack.primaryOffsets();
|
|
const uint numOfSubArrs = tadPack.numberOfTads();
|
|
const uint tadLen = shape::length(tadShapeInfo);
|
|
|
|
if(shape::elementWiseStride(tadShapeInfo) == 1){
|
|
T *inBuff = input.bufferAsT<T>();
|
|
T *outBuff = output.bufferAsT<T>();
|
|
|
|
softmax_loop(inBuff, outBuff, tadOffsets, numOfSubArrs, tadLen);
|
|
}
|
|
else {
|
|
|
|
uint inShapeInfoCast[MAX_RANK];
|
|
bool canCast = nd4j::DataTypeUtils::castShapeInfo(tadShapeInfo, inShapeInfoCast);
|
|
|
|
auto offsets = new Nd4jLong[tadLen];
|
|
shape::calcOffsets(tadShapeInfo, offsets);
|
|
|
|
auto func = PRAGMA_THREADS_FOR {
|
|
for (auto i = start; i < stop; i += increment) {
|
|
auto inBuff = input.bufferAsT<T>() + tadOffsets[i];
|
|
auto outBuff = output.bufferAsT<T>() + tadOffsets[i];
|
|
|
|
T max = -DataTypeUtils::max<T>();
|
|
T sum = 0.f;
|
|
|
|
for (uint j = 0; j < tadLen; ++j)
|
|
max = nd4j::math::nd4j_max<T>(max, inBuff[offsets[j]]);
|
|
|
|
for (uint j = 0; j < tadLen; ++j) {
|
|
T temp = nd4j::math::nd4j_exp<T, T>(inBuff[offsets[j]] - max);
|
|
outBuff[offsets[j]] = temp;
|
|
sum += temp;
|
|
}
|
|
|
|
for (uint j = 0; j < tadLen; ++j)
|
|
outBuff[offsets[j]] /= sum;
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_tad(func, 0, numOfSubArrs);
|
|
|
|
delete []offsets;
|
|
}
|
|
}
|
|
else {
|
|
NDArray max = input.reduceAlongDimension(nd4j::reduce::Max, {dimension}, true);
|
|
input.applyTrueBroadcast(nd4j::BroadcastOpsTuple::Subtract(), max, output, false);
|
|
output.applyTransform(nd4j::transform::Exp, output);
|
|
NDArray sum = output.reduceAlongDimension(nd4j::reduce::Sum, {dimension}, true);
|
|
output /= sum;
|
|
}
|
|
}
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
void softmax(nd4j::LaunchContext * context, const NDArray& input, NDArray& output, const int dimension) {
|
|
|
|
BUILD_SINGLE_SELECTOR(input.dataType(), softmax_, (context, input, output, dimension), FLOAT_TYPES);
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
void prelu(nd4j::LaunchContext * context, const NDArray& input, const NDArray& alpha, NDArray& output) {
|
|
const Nd4jLong inputLen = input.lengthOf();
|
|
const Nd4jLong* inputShapeInfo = input.getShapeInfo();
|
|
const Nd4jLong* alphaShapeInfo = alpha.getShapeInfo();
|
|
|
|
auto func = PRAGMA_THREADS_FOR {
|
|
for (auto i = start; i < stop; i += increment) {
|
|
// FIXME: double!
|
|
double x = input.e<double>(i);
|
|
if (x < 0.0) {
|
|
// FIXME: double
|
|
output.p(i, (x * alpha.e<double>(shape::subArrayIndex(i, inputShapeInfo, alphaShapeInfo))));
|
|
} else
|
|
output.p(i, x);
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_for(func, 0, inputLen);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
void preluBP(nd4j::LaunchContext * context, const NDArray& input, const NDArray& alpha, const NDArray& dLdO, NDArray& dLdI, NDArray& dLdA) {
|
|
|
|
const Nd4jLong inputLen = input.lengthOf();
|
|
const Nd4jLong* inputShapeInfo = input.getShapeInfo();
|
|
const Nd4jLong* alphaShapeInfo = alpha.getShapeInfo();
|
|
|
|
dLdA.assign(0.0f);
|
|
|
|
for(Nd4jLong i = 0; i < inputLen; ++i) {
|
|
// FIXME: double
|
|
double x = input.e<double>(i);
|
|
double grO = dLdO.e<double>(i);
|
|
if(x < 0.0) {
|
|
Nd4jLong alphaInd = shape::subArrayIndex(i, inputShapeInfo, alphaShapeInfo);
|
|
dLdI.p(i, grO * alpha.e<double>(alphaInd));
|
|
double prevVal = dLdA.e<double>(alphaInd);
|
|
prevVal += (grO * x);
|
|
dLdA.p(alphaInd, prevVal);
|
|
}
|
|
else
|
|
dLdI.p(i, grO);
|
|
}
|
|
}
|
|
|
|
|
|
bool checkAlphaShapeLen(std::vector<Nd4jLong> const& expectedShape, Nd4jLong shapeLen) {
|
|
Nd4jLong expectedAlphaLen = std::accumulate(expectedShape.cbegin(), expectedShape.cend(), 1, std::multiplies<Nd4jLong>());
|
|
return expectedAlphaLen == shapeLen;
|
|
}
|
|
template <typename T>
|
|
static void thresholdRelu_(NDArray const& input, double threshold, NDArray& output) {
|
|
auto routine = LAMBDA_T(_x, threshold) {
|
|
return _x > (T)threshold? _x: (T)0.f;
|
|
};
|
|
const_cast<NDArray&>(input).applyLambda<T>(routine, output);
|
|
}
|
|
|
|
void thresholdRelu(nd4j::LaunchContext * context, NDArray const& input, double threshold, NDArray& output) {
|
|
BUILD_SINGLE_SELECTOR(input.dataType(), thresholdRelu_, (input, threshold, output), FLOAT_TYPES);
|
|
}
|
|
|
|
template <typename T>
|
|
static void thresholdReluDerivative_(nd4j::LaunchContext * context, NDArray* input, double theta, NDArray* dLdO, NDArray* output) {
|
|
auto derivative = LAMBDA_TT(_x, grO, theta) {if (_x > theta) return grO; else return static_cast<T>(0); };
|
|
|
|
input->applyPairwiseLambda<T>(*dLdO, derivative, *output);
|
|
|
|
}
|
|
|
|
void thresholdReluDerivative(nd4j::LaunchContext * context, NDArray* input, double threshold, NDArray* dLdO, NDArray* output) {
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), thresholdReluDerivative_, (context, input, threshold, dLdO, output), FLOAT_TYPES);
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
void logSoftmax(nd4j::LaunchContext * context, const NDArray& input, NDArray& output, const int dimension) {
|
|
|
|
const int rank = input.rankOf();
|
|
|
|
if(input.isVector()) {
|
|
|
|
if(rank == 1 || input.sizeAt(dimension) != 1) {
|
|
BUILD_SINGLE_SELECTOR(input.dataType(), logSoftMaxForVector_, (input.getBuffer(), input.getShapeInfo(), output.buffer(), output.shapeInfo()), FLOAT_TYPES);
|
|
}
|
|
else
|
|
output = 0.;
|
|
}
|
|
else {
|
|
|
|
auto maxAlongDim = const_cast<NDArray&>(input).reduceAlongDimension(reduce::Max, {dimension}, true);
|
|
(input - maxAlongDim).applyTransform(transform::Exp, output); // output contains exponents temporarily
|
|
auto sumAlongDim = output.reduceAlongDimension(reduce::Sum, {dimension}, true);
|
|
output /= sumAlongDim;
|
|
output.applyTransform(transform::Log, output);
|
|
}
|
|
}
|
|
|
|
BUILD_SINGLE_TEMPLATE(template void thresholdReluDerivative_, (nd4j::LaunchContext * context, NDArray* input, double threshold, NDArray* dLdO, NDArray* output), FLOAT_TYPES);
|
|
BUILD_SINGLE_TEMPLATE(template void softmax_, (nd4j::LaunchContext * context, const NDArray& input, NDArray& output, const int dimension), FLOAT_TYPES);
|
|
BUILD_SINGLE_TEMPLATE(template void logSoftMaxForVector_, (void *input, Nd4jLong *inShapeInfo, void *output, Nd4jLong *outShapeInfo), FLOAT_TYPES);
|
|
BUILD_SINGLE_TEMPLATE(template void _softMaxDerivForVector, (nd4j::LaunchContext * context, const void *input, const Nd4jLong *inShapeInfo, void *output), FLOAT_TYPES);
|
|
|
|
}
|
|
}
|
|
}
|
|
|