* initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * another initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * another initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * one more initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Refactored buffer() and shapeInfo() methods usage with NDArray class. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt Graph class methods to use const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt choose op to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt where op shape method to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt lstsq op to use constant empty shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt matrix_diag_part op shape routine to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt determinant ops to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt mean_pairwssqerr_loss ops to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt shape methods for loss ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt log_loss op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt shape methods for ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt dilation2d ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted deconv2d ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted dynamicRNN op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods for ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods for lstm layer ops. Signed-off-by: shugeo <sgazeos@gmail.com> * few updates Signed-off-by: raver119@gmail.com <raver119@gmail.com> * first cuda tweak Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Adopt constant shapes for sconv2d ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt constant shapes for gru ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt constant shapes with shape methods for segment ops and so on. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted constant shapes with unsorted_segment_* ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted constant shapes with gamma op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods of reduce_stddev ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods for reduce_* ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt shape method for squeeze op. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt strided_slice shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored concat op shape method to adopt constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape method for mirror_pad op. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted split op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted tile ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Added const cast for mkldnn routines handles. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored logSoftMaxForVector_ routine to conform with proper data and shape pointer casts. Signed-off-by: shugeo <sgazeos@gmail.com> * Cosmetic changes to proper usage of constant pointers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored a couple shape comparators for strides and addBias helpers to proper use data pointers with inplace option. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored depthToSpace helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored histogram helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored im2col helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored gather and gatherND helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage on percentile helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed gather shape with helpers and range buffer usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with space to depth helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage and constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with LUP decomposition> Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored onehot_ helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pad and prefix to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactoed softmax helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed space to batch helpers to use buffers properly. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed stack and split helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with sparse to dense helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with mindistance_ helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with tile helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed constant shape usage with legacy pairwise bool ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored a couple of methods to adopt constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed broadcasting with constant shape." Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const usage with inplace reverse and constant shapes with legacy reduction. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored legacy ops with const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored sort to adopt constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected sort for constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed constant shape usage with special methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored Context to conform with constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * CUDA broadcasting headers Signed-off-by: raver119@gmail.com <raver119@gmail.com> * pairwise/indexreduce/random headers Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Refactored native ops to adopt constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * legacy reduce3/scalar headers Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Corrected pullRow signature and tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected routines to proper use of constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored tests to use constant shapes properly. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored legacy ops tests to use constant shapes properly. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored buffer usage with NDArray tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed native ops tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed special concat routine. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with test. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with a test. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored TAD.h and tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored calcStrides* routines to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed miscelaneous errors with constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * NativeOps const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Corrected definitions for declared functions. Signed-off-by: shugeo <sgazeos@gmail.com> * NativeOps const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * few more const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed const shapes with shape routines. Signed-off-by: shugeo <sgazeos@gmail.com> * few more const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed shape method for broadcastable case. Signed-off-by: shugeo <sgazeos@gmail.com> * few more const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * xw_plus_b BP shape fn restored Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed signatures with broadcasting. Signed-off-by: shugeo <sgazeos@gmail.com> * Repaired backprops shape methods for a set of operations. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored broadcast bool for cuda. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored methods for 3 args with const qualifier. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed a couple of kernel signatures for broadcasting. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernels signatures for const buffers and shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pairwise methods to persistent buffers and shapes usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt const to buffers and shapes with kernels. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt const to buffers and shapes with scalar kernels. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored indexreduce kernels signatures to use const buffers and shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pairwise kernels to adopt cons shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pairwise bool kernels to adopt cons shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored random special ops to conform with const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored native ops to conform with const shapes and buffers under cuda platform. Signed-off-by: shugeo <sgazeos@gmail.com> * Cosmetical changes only. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shapes and buffers error. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected start pos routine. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored methods to conform with const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored helpers to use proper methods instead. Signed-off-by: shugeo <sgazeos@gmail.com> * bunch of changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next bunch of changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next bunch of changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed execScalar declaration. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed execScalar declaration. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected const shape cases with sort and so on. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shapes for sort. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored kernel declarations to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernels declarations to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected kernel declarations to adopt const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernels declarations to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed segment helpers kernels declarations and so on to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shape usage with segment and solve helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernel declaration with adjustWeight helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed cuda implementations for constant shape helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted const shape usage with kernels. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted top_k kernels to use const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected kernels declarations to adopt const shapes with helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored NDArray definitions to adopt const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shapes with image suppression helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Slight improvement with buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored buffer usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored buffer usage with tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shape usage with definitions. Signed-off-by: shugeo <sgazeos@gmail.com> * minor updates on cpu side Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Refactored const shape usage with ConstantDescritor and native ops with cuda platform. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored tear and tile kernels to adopt with const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * softmax_loop fix Signed-off-by: raver119 <raver119@gmail.com> * update missing signature Signed-off-by: raver119@gmail.com <raver119@gmail.com> * softmax again Signed-off-by: raver119@gmail.com <raver119@gmail.com> * few more missing consts Signed-off-by: raver119 <raver119@gmail.com> * new methods updated Signed-off-by: raver119@gmail.com <raver119@gmail.com> Co-authored-by: shugeo <sgazeos@gmail.com>
856 lines
23 KiB
C++
856 lines
23 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// Created by raver119 on 23.11.17.
|
|
//
|
|
|
|
|
|
#include "testlayers.h"
|
|
#include <graph/Graph.h>
|
|
#include <graph/Node.h>
|
|
#include <ops/declarable/CustomOperations.h>
|
|
|
|
using namespace sd;
|
|
using namespace sd::graph;
|
|
|
|
class BroadcastableOpsTests : public testing::Test {
|
|
public:
|
|
|
|
};
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Add_1) {
|
|
|
|
NDArray x('c', {5, 5}, sd::DataType::FLOAT32);
|
|
NDArray y('c', {1, 5}, sd::DataType::FLOAT32);
|
|
NDArray exp('c', {5, 5}, sd::DataType::FLOAT32);
|
|
x.linspace(1);
|
|
y.linspace(1);
|
|
exp.linspace(1);
|
|
|
|
//exp.printIndexedBuffer("E B");
|
|
|
|
exp.applyBroadcast(broadcast::Add, {1}, y, exp);
|
|
|
|
sd::ops::add op;
|
|
auto result = op.evaluate({&x, &y});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result.status());
|
|
|
|
auto z = result.at(0);
|
|
|
|
//exp.printIndexedBuffer("E A");
|
|
//z->printIndexedBuffer("Z");
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
}
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Multiply_1) {
|
|
auto x = NDArrayFactory::create<float>('c', {5, 5});
|
|
auto y = NDArrayFactory::create<float>('c', {1, 5});
|
|
auto exp = NDArrayFactory::create<float>('c', {5, 5});
|
|
x.linspace(1);
|
|
y.linspace(1);
|
|
exp.linspace(1);
|
|
|
|
exp.applyBroadcast(broadcast::Multiply, {1}, y, exp);
|
|
|
|
sd::ops::multiply op;
|
|
auto result = op.evaluate({&x, &y});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result.status());
|
|
|
|
auto z = result.at(0);
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
}
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_SquaredSubtract_1) {
|
|
auto x = NDArrayFactory::create<float>('c', {5, 5});
|
|
auto y = NDArrayFactory::create<float>('c', {1, 5});
|
|
auto exp = NDArrayFactory::create<float>('c', {5, 5});
|
|
x.linspace(1);
|
|
y.linspace(1);
|
|
exp.linspace(1);
|
|
|
|
exp.applyBroadcast(broadcast::SquaredSubtract, {1}, y, exp);
|
|
|
|
|
|
sd::ops::squaredsubtract op;
|
|
auto result = op.evaluate({&x, &y});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result.status());
|
|
|
|
auto z = result.at(0);
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
}
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_ScalarBroadcast_1) {
|
|
auto x = NDArrayFactory::create<float>('c', {1, 1}, {1});
|
|
auto y = NDArrayFactory::create<float>('c', {1, 3}, {0, 1, 2});
|
|
auto exp = NDArrayFactory::create<float>('c', {1,3}, {1, 0, -1});
|
|
|
|
sd::ops::subtract op;
|
|
auto result = op.evaluate({&x, &y});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result.status());
|
|
|
|
auto z = result.at(0);
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
}
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_ScalarBroadcast_2) {
|
|
auto x = NDArrayFactory::create<float>('c', {1, 1}, {1});
|
|
auto y = NDArrayFactory::create<float>('c', {1, 3}, {0, 1, 2});
|
|
auto exp = NDArrayFactory::create<float>('c', {1,3}, {1, 2, 3});
|
|
|
|
sd::ops::add op;
|
|
auto result = op.evaluate({&x, &y});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result.status());
|
|
|
|
auto z = result.at(0);
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
}
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Maximum_1) {
|
|
auto x = NDArrayFactory::create<float>('c', {2, 3}, {1, 2, 1, 2, 3, 2});
|
|
auto row = NDArrayFactory::create<float>('c', {1, 3}, {2, 2, 2});
|
|
auto exp = NDArrayFactory::create<float>('c', {2, 3}, {2, 2, 2, 2, 3, 2});
|
|
|
|
sd::ops::maximum op;
|
|
auto result = op.evaluate({&x, &row});
|
|
ASSERT_EQ(ND4J_STATUS_OK, result.status());
|
|
|
|
auto z = result.at(0);
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
}
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Minimum_1) {
|
|
auto x = NDArrayFactory::create<float>('c', {2, 3}, {1, 2, 1, 2, 3, 2});
|
|
auto col = NDArrayFactory::create<float>('c', {2, 1}, {2, 1});
|
|
auto exp = NDArrayFactory::create<float>('c', {2, 3}, {1, 2, 1, 1, 1, 1});
|
|
|
|
sd::ops::minimum op;
|
|
auto result = op.evaluate({&x, &col});
|
|
ASSERT_EQ(ND4J_STATUS_OK, result.status());
|
|
|
|
auto z = result.at(0);
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
}
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Shape_1) {
|
|
sd::ops::minimum op;
|
|
|
|
Nd4jLong shapeX[] = {2, 2, 5, 5, 1, 8192, 1, 99};
|
|
Nd4jLong shapeY[] = {2, 2, 5, 5, 1, 8192, 1, 99};
|
|
ShapeList inputShape({shapeX, shapeY});
|
|
VariableSpace vs;
|
|
Context ctx(1, &vs, false);
|
|
|
|
auto shapes = op.calculateOutputShape(&inputShape, ctx);
|
|
|
|
auto shapeZ = shapes->at(0);
|
|
ASSERT_TRUE(shape::shapeEquals(shapeX, shapeZ));
|
|
|
|
delete shapes;
|
|
}
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Shape_2) {
|
|
sd::ops::minimum op;
|
|
|
|
const Nd4jLong shapeX[] = {2, 1, 1, 1, 1, 8192, 1, 99};
|
|
const Nd4jLong shapeY[] = {2, 2, 5, 5, 1, 8192, 1, 99};
|
|
ShapeList inputShape({shapeX, shapeY});
|
|
VariableSpace vs;
|
|
Context ctx(1, &vs, false);
|
|
|
|
auto shapes = op.calculateOutputShape(&inputShape, ctx);
|
|
|
|
auto shapeZ = shapes->at(0);
|
|
ASSERT_TRUE(shape::shapeEquals(shapeY, shapeZ));
|
|
|
|
delete shapes;
|
|
}
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Shape_3) {
|
|
sd::ops::minimum op;
|
|
|
|
const Nd4jLong shapeX[] = {2, 5, 3, 1, 1, 8192, 1, 99};
|
|
const Nd4jLong shapeY[] = {2, 1, 3, 3, 1, 8192, 1, 99};
|
|
ShapeList inputShape({shapeX, shapeY});
|
|
VariableSpace vs;
|
|
Context ctx(1, &vs, false);
|
|
|
|
auto shapes = op.calculateOutputShape(&inputShape, ctx);
|
|
|
|
auto shapeZ = shapes->at(0);
|
|
ASSERT_TRUE(shape::shapeEquals(shapeX, shapeZ));
|
|
|
|
delete shapes;
|
|
}
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Shape_4) {
|
|
sd::ops::minimum op;
|
|
|
|
const Nd4jLong shapeX[] = {2, 5, 3, 1, 1, 8192, 1, 99};
|
|
const Nd4jLong shapeY[] = {2, 5, 1, 1, 1, 8192, 1, 99};
|
|
ShapeList inputShape({shapeX, shapeY});
|
|
VariableSpace vs;
|
|
Context ctx(1, &vs, false);
|
|
|
|
auto shapes = op.calculateOutputShape(&inputShape, ctx);
|
|
|
|
auto shapeZ = shapes->at(0);
|
|
ASSERT_TRUE(shape::shapeEquals(shapeX, shapeZ));
|
|
|
|
delete shapes;
|
|
}
|
|
|
|
// (2,1,3) + (4,3) = (2,4,3)
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Shape_5) {
|
|
sd::ops::minimum op;
|
|
|
|
const Nd4jLong shapeX[] = {3, 2, 1, 3, 3, 3, 1, 8192, 1, 99};
|
|
const Nd4jLong shapeY[] = {2, 4, 3, 3, 1, 8192, 1, 99};
|
|
const Nd4jLong shapeE[] = {3, 2, 4, 3, 12, 3, 1, 8192, 1, 99};
|
|
ShapeList inputShape({shapeX, shapeY});
|
|
VariableSpace vs;
|
|
Context ctx(1, &vs, false);
|
|
|
|
auto shapes = op.calculateOutputShape(&inputShape, ctx);
|
|
|
|
auto shapeZ = shapes->at(0);
|
|
ASSERT_TRUE(shape::shapeEquals(shapeE, shapeZ));
|
|
|
|
delete shapes;
|
|
}
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Scalar_Add_1) {
|
|
auto x = NDArrayFactory::create<float>('c', {2, 2}, {1, 2, 3, 4});
|
|
auto y = NDArrayFactory::create<float>(2.0f);
|
|
auto exp = NDArrayFactory::create<float>('c', {2, 2}, {3, 4, 5, 6});
|
|
|
|
sd::ops::add op;
|
|
auto result = op.evaluate({&x, &y});
|
|
ASSERT_EQ(Status::OK(), result.status());
|
|
|
|
auto z = result.at(0);
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
}
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Inplace_Output_1) {
|
|
auto x = NDArrayFactory::create<float>('c', {2, 1, 3});
|
|
auto y = NDArrayFactory::create<float>('c', {4, 3});
|
|
auto o = NDArrayFactory::create<float>('c', {2, 4, 3});
|
|
auto e = NDArrayFactory::create<float>('c', {2, 4, 3});
|
|
auto buffO1 = reinterpret_cast<float *>(o.buffer());
|
|
y.assign(1.0f);
|
|
e.assign(1.0f);
|
|
|
|
sd::ops::add op;
|
|
auto result = op.execute({&x, &y}, {&o}, {}, {}, {});
|
|
ASSERT_EQ(Status::OK(), result);
|
|
|
|
auto buffO2 = reinterpret_cast<float *>(o.buffer());
|
|
|
|
ASSERT_TRUE(e.isSameShape(o));
|
|
ASSERT_TRUE(e.equalsTo(o));
|
|
|
|
ASSERT_TRUE(buffO1 == buffO2);
|
|
}
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Subtract_1) {
|
|
|
|
auto x = NDArrayFactory::create<float>(1.0f);
|
|
auto y = NDArrayFactory::create<float>('c', {2}, {0.0f, 1.0f});
|
|
auto e = NDArrayFactory::create<float>('c', {2}, {1.0f, 0.0f});
|
|
|
|
auto z = x - y;
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
}
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Subtract_2) {
|
|
auto x = NDArrayFactory::create<float>(1.0f);
|
|
auto y = NDArrayFactory::create<float>('c', {2}, {0.0f, 1.0f});
|
|
auto e = NDArrayFactory::create<float>('c', {2}, {1.0f, 0.0f});
|
|
|
|
sd::ops::subtract op;
|
|
auto result = op.evaluate({&x, &y});
|
|
auto z = result.at(0);
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
}
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Subtract_3) {
|
|
auto x = NDArrayFactory::create<float>(1.0f);
|
|
auto y = NDArrayFactory::create<float>('c', {2}, {0.0f, 1.0f});
|
|
auto z = NDArrayFactory::create<float>('c', {2}, {0.0f, 0.0f});
|
|
auto e = NDArrayFactory::create<float>('c', {2}, {1.0f, 0.0f});
|
|
|
|
sd::ops::subtract op;
|
|
auto result = op.execute({&x, &y}, {&z}, {}, {}, {});
|
|
|
|
ASSERT_EQ(Status::OK(), result);
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
}
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Subtract_4) {
|
|
auto x = NDArrayFactory::create<float>(1.0f);
|
|
auto y = NDArrayFactory::create<float>('c', {2}, {0.0f, 1.0f});
|
|
auto e = NDArrayFactory::create<float>('c', {2}, {1.0f, 0.0f});
|
|
|
|
auto z = x.applyTrueBroadcast(BroadcastOpsTuple::Subtract(), y);
|
|
|
|
ASSERT_TRUE(e.isSameShape(z));
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
TEST_F(BroadcastableOpsTests, Test_Subtract_5) {
|
|
auto x = NDArrayFactory::create<float>(1.0f);
|
|
auto y = NDArrayFactory::create<float>('c', {2}, {0.0f, 1.0f});
|
|
auto e = NDArrayFactory::create<float>('c', {2}, {-1., 0.});
|
|
|
|
auto z = y - x;
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
TEST_F(BroadcastableOpsTests, Test_Subtract_6) {
|
|
auto x = NDArrayFactory::create<float>(1.0f);
|
|
auto y = NDArrayFactory::create<float>(4.f);
|
|
auto e = NDArrayFactory::create<float>(3.f);
|
|
|
|
auto z = y - x;
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
TEST_F(BroadcastableOpsTests, Test_Subtract_7) {
|
|
auto x = NDArrayFactory::create<float>(1.0f);
|
|
auto y = NDArrayFactory::create<float>(4.f);
|
|
auto e = NDArrayFactory::create<float>(-3.f);
|
|
|
|
auto z = x - y;
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
TEST_F(BroadcastableOpsTests, Test_Add_2) {
|
|
|
|
auto x = NDArrayFactory::create<float>(1.0f);
|
|
auto y = NDArrayFactory::create<float>('c', {2}, {0.0f, 1.0f});
|
|
auto e = NDArrayFactory::create<float>('c', {2}, {1.f, 2.f});
|
|
|
|
auto z = x + y;
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
TEST_F(BroadcastableOpsTests, Test_Add_3) {
|
|
|
|
auto x = NDArrayFactory::create<float>(1.0f);
|
|
auto y = NDArrayFactory::create<float>('c', {2}, {0.0f, 1.0f});
|
|
auto e = NDArrayFactory::create<float>('c', {2}, {1.f, 2.f});
|
|
|
|
auto z = y + x;
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
TEST_F(BroadcastableOpsTests, Test_Add_4) {
|
|
|
|
auto x = NDArrayFactory::create<float>(1.0f);
|
|
auto y = NDArrayFactory::create<float>(4.f);
|
|
auto e = NDArrayFactory::create<float>(5.f);
|
|
|
|
auto z = x + y;
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
TEST_F(BroadcastableOpsTests, Test_Add_5) {
|
|
|
|
auto x = NDArrayFactory::create<float>(1.0f);
|
|
auto y = NDArrayFactory::create<float>(4.f);
|
|
auto e = NDArrayFactory::create<float>(5.f);
|
|
|
|
auto z = y + x;
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
TEST_F(BroadcastableOpsTests, Test_Multiply_2) {
|
|
|
|
auto x = NDArrayFactory::create<float>(2.0f);
|
|
auto y = NDArrayFactory::create<float>('c', {2}, {3.f, 4.f});
|
|
auto e = NDArrayFactory::create<float>('c', {2}, {6.f, 8.f});
|
|
|
|
auto z = y * x;
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
TEST_F(BroadcastableOpsTests, Test_Multiply_3) {
|
|
|
|
auto x = NDArrayFactory::create<float>(2.0f);
|
|
auto y = NDArrayFactory::create<float>('c', {2}, {3.f, 4.f});
|
|
auto e = NDArrayFactory::create<float>('c', {2}, {6.f, 8.f});
|
|
|
|
auto z = x * y;
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
TEST_F(BroadcastableOpsTests, Test_Multiply_4) {
|
|
|
|
auto x = NDArrayFactory::create<float>(2.0f);
|
|
auto y = NDArrayFactory::create<float>(4.f);
|
|
auto e = NDArrayFactory::create<float>(8.f);
|
|
|
|
auto z = y * x;
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
TEST_F(BroadcastableOpsTests, Test_Multiply_5) {
|
|
|
|
auto x = NDArrayFactory::create<float>(2.0f);
|
|
auto y = NDArrayFactory::create<float>(4.f);
|
|
auto e = NDArrayFactory::create<float>(8.f);
|
|
|
|
auto z = x * y;
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
}
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Multiply_6) {
|
|
auto x = NDArrayFactory::create<float>(2.0f);
|
|
auto y = NDArrayFactory::create<float>('c', {1}, {4.f});
|
|
auto e = NDArrayFactory::create<float>('c', {1}, {8.f});
|
|
|
|
auto z = x * y;
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
}
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Multiply_7) {
|
|
auto x = NDArrayFactory::create<float>(2.0f);
|
|
auto y = NDArrayFactory::create<float>('c', {1}, {4.f});
|
|
auto e = NDArrayFactory::create<float>('c', {1}, {8.f});
|
|
|
|
sd::ops::multiply op;
|
|
auto result = op.evaluate({&x, &y});
|
|
ASSERT_EQ(Status::OK(), result.status());
|
|
|
|
auto z = result.at(0);
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
}
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Multiply_8) {
|
|
auto x = NDArrayFactory::create<float>(2.0f);
|
|
auto y = NDArrayFactory::create<float>('c', {1, 1}, {4.f});
|
|
auto e = NDArrayFactory::create<float>('c', {1, 1}, {8.f});
|
|
|
|
sd::ops::multiply op;
|
|
auto result = op.evaluate({&x, &y});
|
|
ASSERT_EQ(Status::OK(), result.status());
|
|
|
|
auto z = result.at(0);
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
TEST_F(BroadcastableOpsTests, broadcast_add_1) {
|
|
|
|
NDArray x('c', {4}, {1,1,1,1});
|
|
NDArray y('c', {1,4}, {1,2,3,4});
|
|
NDArray z('c', {1,4}, sd::DataType::DOUBLE);
|
|
NDArray exp('c', {1,4}, {2,3,4,5}, sd::DataType::DOUBLE);
|
|
|
|
sd::ops::add op;
|
|
auto status = op.execute({&x, &y}, {&z});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, status);
|
|
ASSERT_TRUE(z.equalsTo(exp));
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
TEST_F(BroadcastableOpsTests, broadcast_equals_1) {
|
|
|
|
NDArray x('c', {1,4}, {1,2,3,4});
|
|
NDArray y('c', {3,4}, {0,0,0,0, 1,2,3,4, 1,2,3,4});
|
|
NDArray z('c', {3,4}, sd::DataType::BOOL);
|
|
NDArray exp('c', {3,4}, {0,0,0,0, 1,1,1,1, 1,1,1,1}, sd::DataType::BOOL);
|
|
|
|
sd::ops::equals op;
|
|
auto status = op.execute({&x, &y}, {&z});
|
|
// z.printIndexedBuffer();
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, status);
|
|
ASSERT_TRUE(z.equalsTo(exp));
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
TEST_F(BroadcastableOpsTests, broadcast_empty_1) {
|
|
|
|
NDArray y('c', {3,4}, {0,0,0,0, 1,2,3,4, 1,2,3,4});
|
|
NDArray x(sd::DataType::DOUBLE, y.getContext(), false);
|
|
NDArray z(sd::DataType::DOUBLE, y.getContext(), false);
|
|
NDArray zExp(sd::DataType::DOUBLE, y.getContext(), false);
|
|
|
|
sd::ops::multiply op;
|
|
auto status = op.execute({&x, &y}, {&z}, {}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, status);
|
|
ASSERT_TRUE(z.isSameShape(zExp));
|
|
ASSERT_TRUE(z.equalsTo(zExp));
|
|
}
|
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_empty_2) {
|
|
|
|
NDArray y('c', {1,4}, {1,2,3,4});
|
|
NDArray x = NDArrayFactory::create<double>('c', {0, 4});
|
|
NDArray e = NDArrayFactory::create<double>('c', {0, 4});;
|
|
|
|
sd::ops::multiply op;
|
|
auto status = op.execute({&x, &y}, {&x}, {}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, status);
|
|
ASSERT_TRUE(e.isSameShape(x));
|
|
ASSERT_TRUE(e.equalsTo(x));
|
|
}
|
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_empty_3) {
|
|
|
|
NDArray x = NDArrayFactory::create<float>('c', {1, 0, 2});
|
|
NDArray y('c', {}, std::vector<double>{0.1}, sd::DataType::FLOAT32);
|
|
NDArray e = NDArrayFactory::create<float>('c', {1, 0, 2});;
|
|
|
|
sd::ops::maximum op;
|
|
auto result = op.evaluate({&x, &y});
|
|
|
|
ASSERT_EQ(Status::OK(), result.status());
|
|
|
|
auto z = result.at(0);
|
|
|
|
ASSERT_TRUE(e.isSameShape(z));
|
|
ASSERT_TRUE(e.equalsTo(*z));
|
|
}
|
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_empty_4) {
|
|
|
|
NDArray x = NDArrayFactory::create<float>('c', {1, 0, 1});
|
|
NDArray y = NDArrayFactory::create<float>('c', {1, 0, 2});
|
|
NDArray e = NDArrayFactory::create<float>('c', {1, 0, 2});;
|
|
|
|
sd::ops::maximum op;
|
|
auto result = op.evaluate({&x, &y});
|
|
|
|
ASSERT_EQ(Status::OK(), result.status());
|
|
|
|
auto z = result.at(0);
|
|
|
|
ASSERT_TRUE(e.isSameShape(z));
|
|
ASSERT_TRUE(e.equalsTo(*z));
|
|
|
|
}
|
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_empty_5) {
|
|
|
|
NDArray x = NDArrayFactory::create<float>('c', {1, 0, 1});
|
|
NDArray y = NDArrayFactory::create<float>('c', {1, 0, 2});
|
|
NDArray e = NDArrayFactory::create<float>('c', {1, 0, 2});;
|
|
|
|
sd::ops::realdiv op;
|
|
auto result = op.evaluate({&x, &y});
|
|
|
|
ASSERT_EQ(Status::OK(), result.status());
|
|
|
|
auto z = result.at(0);
|
|
|
|
ASSERT_TRUE(e.isSameShape(z));
|
|
ASSERT_TRUE(e.equalsTo(*z));
|
|
|
|
}
|
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_empty_6) {
|
|
|
|
NDArray x = NDArrayFactory::create<float>('c', {1, 0, 1});
|
|
NDArray y = NDArrayFactory::create<float>('c', {1, 2}, {2, 2});
|
|
NDArray e = NDArrayFactory::create<float>('c', {1, 0, 2});;
|
|
|
|
sd::ops::realdiv op;
|
|
auto result = op.evaluate({&x, &y});
|
|
|
|
ASSERT_EQ(Status::OK(), result.status());
|
|
|
|
auto z = result.at(0);
|
|
|
|
ASSERT_TRUE(e.isSameShape(z));
|
|
ASSERT_TRUE(e.equalsTo(*z));
|
|
|
|
}
|
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_empty_7) {
|
|
|
|
NDArray x = NDArrayFactory::create<float>('c', {1, 0, 2, 1});
|
|
NDArray y = NDArrayFactory::create<float>('c', {1, 2, 0});
|
|
NDArray e = NDArrayFactory::create<float>('c', {1, 0, 2, 0});;
|
|
|
|
sd::ops::realdiv op;
|
|
auto result = op.evaluate({&x, &y});
|
|
|
|
ASSERT_EQ(Status::OK(), result.status());
|
|
|
|
auto z = result.at(0);
|
|
|
|
ASSERT_TRUE(e.isSameShape(z));
|
|
ASSERT_TRUE(e.equalsTo(*z));
|
|
}
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_bool_empty_1) {
|
|
|
|
NDArray y('c', {3,4}, {0,0,0,0, 1,2,3,4, 1,2,3,4});
|
|
NDArray x(sd::DataType::DOUBLE, y.getContext(), false);
|
|
NDArray z(sd::DataType::BOOL, y.getContext(), false);
|
|
NDArray zExp(sd::DataType::BOOL, y.getContext(), false);
|
|
|
|
sd::ops::greater op;
|
|
auto status = op.execute({&x, &y}, {&z}, {}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, status);
|
|
ASSERT_TRUE(z.isSameShape(zExp));
|
|
ASSERT_TRUE(z.equalsTo(zExp));
|
|
}
|
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_bool_empty_2) {
|
|
|
|
NDArray y('c', {1,4}, {1,2,3,4});
|
|
NDArray x = NDArrayFactory::create<double>('c', {0, 4});
|
|
NDArray e = NDArrayFactory::create<bool>('c', {0, 4});;
|
|
|
|
|
|
sd::ops::greater op;
|
|
auto result = op.evaluate({&x, &y});
|
|
|
|
auto z = result.at(0);
|
|
|
|
// z->printShapeInfo("z");
|
|
|
|
ASSERT_EQ(Status::OK(), result.status());
|
|
ASSERT_TRUE(e.isSameShape(z));
|
|
ASSERT_TRUE(e.equalsTo(*z));
|
|
}
|
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_bool_1) {
|
|
|
|
NDArray x('c', {3, 1, 2}, sd::DataType::FLOAT32);
|
|
NDArray y('c', {2, 2}, sd::DataType::FLOAT32);
|
|
NDArray z('c', {3, 2, 2}, sd::DataType::BOOL);
|
|
NDArray e('c', {3, 2, 2}, sd::DataType::BOOL);
|
|
|
|
x.assign(4.f);
|
|
y.assign(2.f);
|
|
e.assign(true);
|
|
|
|
sd::ops::greater op;
|
|
|
|
auto status = op.execute({&x, &y}, {&z});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, status);
|
|
|
|
// z.printIndexedBuffer("Z");
|
|
|
|
ASSERT_TRUE(z.isSameShape(e));
|
|
ASSERT_TRUE(z.equalsTo(e));
|
|
}
|
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_bool_2) {
|
|
|
|
NDArray x('c', {3, 1, 2}, sd::DataType::FLOAT32);
|
|
NDArray y('c', {2, 2}, sd::DataType::FLOAT32);
|
|
NDArray z('c', {3, 2, 2}, sd::DataType::BOOL);
|
|
NDArray e('c', {3, 2, 2}, sd::DataType::BOOL);
|
|
|
|
x.assign(1.f);
|
|
y.assign(2.f);
|
|
e.assign(false);
|
|
|
|
sd::ops::equals op;
|
|
|
|
auto status = op.execute({&x, &y}, {&z}, {}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, status);
|
|
|
|
// z.printIndexedBuffer("Z");
|
|
|
|
ASSERT_TRUE(z.isSameShape(e));
|
|
ASSERT_TRUE(z.equalsTo(e));
|
|
}
|
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_bool_3) {
|
|
|
|
auto x = NDArrayFactory::create<int>(0);
|
|
auto y = NDArrayFactory::create<int>('c', {3}, {2, 1, 2});
|
|
NDArray z('c', {3}, sd::DataType::BOOL);
|
|
NDArray e('c', {3}, sd::DataType::BOOL);
|
|
|
|
e.assign(true);
|
|
|
|
sd::ops::less op;
|
|
auto status = op.execute({&x, &y}, {&z}, {}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, status);
|
|
|
|
// z.printIndexedBuffer("Z");
|
|
|
|
ASSERT_TRUE(z.isSameShape(e));
|
|
ASSERT_TRUE(z.equalsTo(e));
|
|
}
|
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_2) {
|
|
NDArray x('c', {3, 1, 2}, sd::DataType::FLOAT32);
|
|
NDArray y('c', {2, 2}, sd::DataType::FLOAT32);
|
|
NDArray z('c', {3, 2, 2}, sd::DataType::FLOAT32);
|
|
NDArray e('c', {3, 2, 2}, sd::DataType::FLOAT32);
|
|
|
|
x = 4.f;
|
|
y = 2.f;
|
|
e = -2.f;
|
|
|
|
sd::ops::reversesubtract op; // z = y - x;
|
|
|
|
auto status = op.execute({&x, &y}, {&z}, {}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, status);
|
|
|
|
// z.printIndexedBuffer("Z");
|
|
|
|
ASSERT_TRUE(z.isSameShape(e));
|
|
ASSERT_TRUE(z.equalsTo(e));
|
|
}
|
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_3) {
|
|
auto x = NDArrayFactory::create<int>(0);
|
|
auto y = NDArrayFactory::create<int>('c', {3}, {2, 1, 2});
|
|
NDArray z('c', {3}, sd::DataType::INT32);
|
|
auto e = NDArrayFactory::create<int>('c', {3}, {2, 1, 2});
|
|
|
|
sd::ops::add op;
|
|
auto status = op.execute({&x, &y}, {&z}, {}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, status);
|
|
|
|
// z.printIndexedBuffer("Z");
|
|
|
|
ASSERT_TRUE(z.isSameShape(e));
|
|
ASSERT_TRUE(z.equalsTo(e));
|
|
}
|
|
|
|
TEST_F(BroadcastableOpsTests, test_bert_multiply_1) {
|
|
auto x = NDArrayFactory::create<float>('c', {4, 128, 1});
|
|
auto y = NDArrayFactory::create<float>('c', {4, 1, 128});
|
|
auto z = NDArrayFactory::create<float>('c', {4, 128, 128});
|
|
auto e = NDArrayFactory::create<float>('c', {4, 128, 128});
|
|
|
|
x.assign(0.f);
|
|
y.assign(1.f);
|
|
z.assign(119.f);
|
|
e.assign(0.f);
|
|
/*
|
|
Context ctx(1);
|
|
ctx.setInputArray(0, &x);
|
|
ctx.setInputArray(1, &y);
|
|
ctx.setOutputArray(0, &z);
|
|
|
|
sd::ops::multiply op;
|
|
auto status = op.execute(&ctx);
|
|
ASSERT_EQ(Status::OK(), status);
|
|
|
|
z.printIndexedBuffer();
|
|
*/
|
|
|
|
x.applyTrueBroadcast(BroadcastOpsTuple::Multiply(), y, z);
|
|
|
|
//z.printIndexedBuffer();
|
|
|
|
ASSERT_EQ(e, z);
|
|
}
|
|
|
|
TEST_F(BroadcastableOpsTests, test_bert_multiply_2) {
|
|
auto x = NDArrayFactory::create<float>('c', {4, 128, 1});
|
|
auto y = NDArrayFactory::create<float>('c', {768});
|
|
auto z = NDArrayFactory::create<float>('c', {4, 128, 768});
|
|
auto e = NDArrayFactory::create<float>('c', {4, 128, 768});
|
|
|
|
x.assign(1.f);
|
|
y.assign(2.f);
|
|
z.assign(119.f);
|
|
e.assign(2.f);
|
|
|
|
x.applyTrueBroadcast(BroadcastOpsTuple::Multiply(), y, z);
|
|
|
|
ASSERT_EQ(e, z);
|
|
}
|