raver119 320924278d
Legacy API changes (#441)
* initial commit

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* another initial commit

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* another initial commit

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* one more initial commit

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next step

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next step

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next step

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next step

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Refactored buffer() and shapeInfo() methods usage with NDArray class.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt Graph class methods to use const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt choose op to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt where op shape method to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt lstsq op to use constant empty shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt matrix_diag_part op shape routine to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt determinant ops to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt mean_pairwssqerr_loss ops to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt ops shape methods.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt shape methods for loss ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt log_loss op shape method.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt shape methods for ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt dilation2d ops shape methods.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted deconv2d ops shape methods.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted dynamicRNN op shape method.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted shape methods for ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted shape methods for lstm layer ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* few updates

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* first cuda tweak

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Adopt constant shapes for sconv2d ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt constant shapes for gru ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt constant shapes with shape methods for segment ops and so on.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted constant shapes with unsorted_segment_* ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted constant shapes with gamma op shape method.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted shape methods of reduce_stddev ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted shape methods for reduce_* ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt shape method for squeeze op.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt strided_slice shape method.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored concat op shape method to adopt constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted shape method for mirror_pad op.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted split op shape method.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted tile ops shape methods.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Added const cast for mkldnn routines handles.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored logSoftMaxForVector_ routine to conform with proper data and shape pointer casts.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Cosmetic changes to proper usage of constant pointers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored a couple shape comparators for strides and addBias helpers to proper use data pointers with inplace option.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored depthToSpace helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored histogram helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored im2col helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored gather and gatherND helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage on percentile helper.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed gather shape with helpers and range buffer usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with space to depth helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage and constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with LUP decomposition>

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored onehot_ helper.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored pad and prefix to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactoed softmax helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed space to batch helpers to use buffers properly.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed stack and split helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with sparse to dense helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with mindistance_ helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with tile helper.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed constant shape usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed constant shape usage with legacy pairwise bool ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored a couple of methods to adopt constant shape usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed broadcasting with constant shape."

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const usage with inplace reverse and constant shapes with legacy reduction.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored legacy ops with const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored sort to adopt constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected sort for constant shape usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed constant shape usage with special methods.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored Context to conform with constant shape usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* CUDA broadcasting headers

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* pairwise/indexreduce/random headers

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Refactored native ops to adopt constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* legacy reduce3/scalar headers

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Corrected pullRow signature and tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected routines to proper use of constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored tests to use constant shapes properly.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored legacy ops tests to use constant shapes properly.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored buffer usage with NDArray tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed native ops tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed special concat routine.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with test.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with a test.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored TAD.h and tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored calcStrides* routines to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed miscelaneous errors with constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* NativeOps const changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Corrected definitions for declared functions.

Signed-off-by: shugeo <sgazeos@gmail.com>

* NativeOps const changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* few more const changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Fixed const shapes with shape routines.

Signed-off-by: shugeo <sgazeos@gmail.com>

* few more const changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Fixed shape method for broadcastable case.

Signed-off-by: shugeo <sgazeos@gmail.com>

* few more const changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* xw_plus_b BP shape fn restored

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Fixed signatures with broadcasting.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Repaired backprops shape methods for a set of operations.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored broadcast bool for cuda.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored methods for 3 args with const qualifier.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed a couple of kernel signatures for broadcasting.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed kernels signatures for const buffers and shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored pairwise methods to persistent buffers and shapes usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt const to buffers and shapes with kernels.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt const to buffers and shapes with scalar kernels.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored indexreduce kernels signatures to use const buffers and shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored pairwise kernels to adopt cons shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored pairwise bool kernels to adopt cons shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored random special ops to conform with const shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored native ops to conform with const shapes and buffers under cuda platform.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Cosmetical changes only.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const shapes and buffers error.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected start pos routine.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored methods to conform with const shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored helpers to use proper methods instead.

Signed-off-by: shugeo <sgazeos@gmail.com>

* bunch of changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next bunch of changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next bunch of changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Fixed execScalar declaration.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed execScalar declaration.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected const shape cases with sort and so on.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const shapes for sort.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored kernel declarations to adopt const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed kernels declarations to adopt const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected kernel declarations to adopt const shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed kernels declarations to adopt const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed segment helpers kernels declarations and so on to adopt const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const shape usage with segment and solve helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed kernel declaration with adjustWeight helper.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed cuda implementations for constant shape helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted const shape usage with kernels.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted top_k kernels to use const shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected kernels declarations to adopt const shapes with helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored NDArray definitions to adopt const shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const shapes with image suppression helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Slight improvement with buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored buffer usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored buffer usage with tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const shape usage with definitions.

Signed-off-by: shugeo <sgazeos@gmail.com>

* minor updates on cpu side

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Refactored const shape usage with ConstantDescritor and native ops with cuda platform.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored tear and tile kernels to adopt with const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* softmax_loop fix

Signed-off-by: raver119 <raver119@gmail.com>

* update missing signature

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* softmax again

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* few more missing consts

Signed-off-by: raver119 <raver119@gmail.com>

* new methods updated

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

Co-authored-by: shugeo <sgazeos@gmail.com>
2020-05-09 08:06:14 +03:00

447 lines
22 KiB
Plaintext

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include <system/op_boilerplate.h>
#include <loops/random.h>
#include <system/dll.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <helpers/DebugHelper.h>
#include <ops/specials_cuda.h>
using namespace randomOps;
template <typename T, typename OpClass>
static inline __device__ void randomSingleGeneric(
Nd4jPointer state,
void *z,
Nd4jLong const* zShapeBuffer,
void *extraArguments) {
functions::random::RandomFunction<T>::template execTransformCuda<OpClass>(
state,
z,
zShapeBuffer,
extraArguments);
}
template <typename T, typename OpClass>
static inline __device__ void randomDoubleGeneric(
Nd4jPointer state,
void const* x,
Nd4jLong const* xShapeBuffer,
void *z,
Nd4jLong const* zShapeBuffer,
void *extraArguments) {
functions::random::RandomFunction<T>::template execTransformCuda<OpClass>(
state,
x,
xShapeBuffer,
z,
zShapeBuffer,
extraArguments);
}
template <typename T, typename OpClass>
static inline __device__ void randomTripleGeneric(
Nd4jPointer state,
void const* x,
Nd4jLong const* xShapeBuffer,
void const* y,
Nd4jLong const* yShapeBuffer,
void *z,
Nd4jLong const* zShapeBuffer,
void *extraArguments) {
functions::random::RandomFunction<T>::template execTransformCuda<OpClass>(
state,
x,
xShapeBuffer,
y,
yShapeBuffer,
z,
zShapeBuffer,
extraArguments);
}
#ifndef __CLION_IDE__
// here we generate kernels for target operations
DISPATCH_KERNEL_SIMPLE(randomSingle_, randomSingleGeneric, float, INPUT(Nd4jPointer state, void *z, Nd4jLong const* zShapeBuffer, void *extraArguments), PARAMS(state, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DISPATCH_KERNEL_SIMPLE(randomSingle_, randomSingleGeneric, double, INPUT(Nd4jPointer state, void *z, Nd4jLong const* zShapeBuffer, void *extraArguments), PARAMS(state, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DISPATCH_KERNEL_SIMPLE(randomSingle_, randomSingleGeneric, float16, INPUT(Nd4jPointer state, void *z, Nd4jLong const* zShapeBuffer, void *extraArguments), PARAMS(state, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DISPATCH_KERNEL_SIMPLE(randomSingle_, randomSingleGeneric, bfloat16, INPUT(Nd4jPointer state, void *z, Nd4jLong const* zShapeBuffer, void *extraArguments), PARAMS(state, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DISPATCH_KERNEL_SIMPLE(randomDouble_, randomDoubleGeneric, float, INPUT(Nd4jPointer state, void const* x, Nd4jLong const* xShapeBuffer, void *z, Nd4jLong const* zShapeBuffer, void *extraArguments), PARAMS(state, x, xShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DISPATCH_KERNEL_SIMPLE(randomDouble_, randomDoubleGeneric, double, INPUT(Nd4jPointer state, void const* x, Nd4jLong const* xShapeBuffer, void *z, Nd4jLong const* zShapeBuffer, void *extraArguments), PARAMS(state, x, xShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DISPATCH_KERNEL_SIMPLE(randomDouble_, randomDoubleGeneric, float16, INPUT(Nd4jPointer state, void const* x, Nd4jLong const* xShapeBuffer, void *z, Nd4jLong const* zShapeBuffer, void *extraArguments), PARAMS(state, x, xShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DISPATCH_KERNEL_SIMPLE(randomDouble_, randomDoubleGeneric, bfloat16, INPUT(Nd4jPointer state, void const* x, Nd4jLong const* xShapeBuffer, void *z, Nd4jLong const* zShapeBuffer, void *extraArguments), PARAMS(state, x, xShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DISPATCH_KERNEL_SIMPLE(randomTriple_, randomTripleGeneric, float, INPUT(Nd4jPointer state, void const* x, Nd4jLong const* xShapeBuffer, void const* y, Nd4jLong const* yShapeBuffer, void *z, Nd4jLong const* zShapeBuffer, void *extraArguments), PARAMS(state, x, xShapeBuffer, y, yShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DISPATCH_KERNEL_SIMPLE(randomTriple_, randomTripleGeneric, double, INPUT(Nd4jPointer state, void const* x, Nd4jLong const* xShapeBuffer, void const* y, Nd4jLong const* yShapeBuffer, void *z, Nd4jLong const* zShapeBuffer, void *extraArguments), PARAMS(state, x, xShapeBuffer, y, yShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DISPATCH_KERNEL_SIMPLE(randomTriple_, randomTripleGeneric, float16, INPUT(Nd4jPointer state, void const* x, Nd4jLong const* xShapeBuffer, void const* y, Nd4jLong const* yShapeBuffer, void *z, Nd4jLong const* zShapeBuffer, void *extraArguments), PARAMS(state, x, xShapeBuffer, y, yShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DISPATCH_KERNEL_SIMPLE(randomTriple_, randomTripleGeneric, bfloat16, INPUT(Nd4jPointer state, void const* x, Nd4jLong const* xShapeBuffer, void const* y, Nd4jLong const* yShapeBuffer, void *z, Nd4jLong const* zShapeBuffer, void *extraArguments), PARAMS(state, x, xShapeBuffer, y, yShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
#endif
namespace functions {
namespace random {
template<typename T>
template<typename OpClass>
void _CUDA_D RandomFunction<T>::execTransformCuda(Nd4jPointer state, void const* vx, Nd4jLong const* xShapeBuffer, void const* vy, Nd4jLong const* yShapeBuffer, void *vz, Nd4jLong const* zShapeBuffer, void *vextraArguments) {
auto x = reinterpret_cast<T const*>(vx);
auto y = reinterpret_cast<T const*>(vy);
auto z = reinterpret_cast<T*>(vz);
auto extraArguments = reinterpret_cast<T*>(vextraArguments);
if (OpClass::requiresSpecial) {
OpClass::specialOpCuda(state, x, xShapeBuffer, y, yShapeBuffer, z, zShapeBuffer, extraArguments);
return;
} else {
__shared__ Nd4jLong length;
__shared__ int xEWS;
__shared__ int yEWS;
__shared__ int zEWS;
__shared__ char xOrder;
__shared__ char yOrder;
__shared__ char zOrder;
__shared__ sd::graph::RandomGenerator *buffer;
__shared__ unsigned char *cB;
__shared__ unsigned char *dB;
sd::graph::RandomGenerator *devBuffer;
if (threadIdx.x == 0) {
length = shape::length(zShapeBuffer);
xEWS = shape::elementWiseStride(xShapeBuffer);
yEWS = shape::elementWiseStride(yShapeBuffer);
zEWS = shape::elementWiseStride(zShapeBuffer);
xOrder = shape::order(xShapeBuffer);
yOrder = shape::order(yShapeBuffer);
zOrder = shape::order(zShapeBuffer);
extern __shared__ unsigned char shmem[];
buffer = (sd::graph::RandomGenerator *) shmem;
cB = shmem;
devBuffer = reinterpret_cast<sd::graph::RandomGenerator *> (state);
dB = reinterpret_cast<unsigned char *> (state);
}
__syncthreads();
// using this loop instead of memcpy
for (int e = threadIdx.x; e < sizeof(sd::graph::RandomGenerator); e+= blockDim.x)
cB[e] = dB[e];
__syncthreads();
int tid = blockIdx.x * blockDim.x + threadIdx.x;
if (xEWS >= 1 && yEWS >= 1 && zEWS >= 1 && xOrder == yOrder && xOrder == zOrder) {
for (Nd4jLong e = tid; e < length; e += blockDim.x * gridDim.x) {
z[e * zEWS] = OpClass::op(x[e * xEWS], y[e * yEWS], e, length, buffer, extraArguments);
}
} else {
for (Nd4jLong i = tid; i < length; i += blockDim.x * gridDim.x) {
auto xOffset2 = shape::getIndexOffset(i, xShapeBuffer);
auto yOffset2 = shape::getIndexOffset(i, yShapeBuffer);
auto zOffset2 = shape::getIndexOffset(i, zShapeBuffer);
z[zOffset2] = OpClass::op(x[xOffset2], y[yOffset2], i, length, buffer, extraArguments);
}
}
}
};
template<typename T>
template<typename OpClass>
void _CUDA_D RandomFunction<T>::execTransformCuda(Nd4jPointer state, void const* vx, Nd4jLong const* xShapeBuffer, void* vz, Nd4jLong const* zShapeBuffer, void *vextraArguments) {
auto x = reinterpret_cast<T const*>(vx);
auto z = reinterpret_cast<T*>(vz);
auto extraArguments = reinterpret_cast<T*>(vextraArguments);
__shared__ Nd4jLong length;
__shared__ int xEWS;
__shared__ int zEWS;
__shared__ char xOrder;
__shared__ char zOrder;
__shared__ sd::graph::RandomGenerator *buffer;
__shared__ unsigned char *cB;
__shared__ unsigned char *dB;
__shared__ sd::graph::RandomGenerator *devBuffer;
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
buffer = (sd::graph::RandomGenerator *) shmem;
cB = shmem;
devBuffer = reinterpret_cast<sd::graph::RandomGenerator *> (state);
dB = reinterpret_cast<unsigned char *> (state);
length = shape::length(zShapeBuffer);
xEWS = shape::elementWiseStride(xShapeBuffer);
zEWS = shape::elementWiseStride(zShapeBuffer);
xOrder = shape::order(xShapeBuffer);
zOrder = shape::order(zShapeBuffer);
}
__syncthreads();
// using this loop instead of memcpy
for (int e = threadIdx.x; e < sizeof(sd::graph::RandomGenerator); e+= blockDim.x)
cB[e] = dB[e];
__syncthreads();
if (xEWS >= 1 && zEWS >= 1 && xOrder == zOrder) {
for (Nd4jLong e = blockIdx.x * blockDim.x + threadIdx.x; e < length; e += blockDim.x * gridDim.x) {
z[e * zEWS] = OpClass::op(x[e * xEWS], e, length, buffer, extraArguments);
}
} else {
for (Nd4jLong i = blockIdx.x * blockDim.x + threadIdx.x; i < length; i += blockDim.x * gridDim.x) {
auto xOffset2 = shape::getIndexOffset(i, xShapeBuffer);
auto zOffset2 = shape::getIndexOffset(i, zShapeBuffer);
z[zOffset2] = OpClass::op(x[xOffset2], i, length, buffer, extraArguments);
}
}
}
template<typename T>
template<typename OpClass>
void _CUDA_D RandomFunction<T>::execTransformCuda(Nd4jPointer state, void *vz, Nd4jLong const* zShapeBuffer, void *vextraArguments) {
auto z = reinterpret_cast<T*>(vz);
auto extraArguments = reinterpret_cast<T*>(vextraArguments);
__shared__ Nd4jLong length;
__shared__ Nd4jLong ews;
__shared__ sd::graph::RandomGenerator *buffer;
__shared__ unsigned char *cB;
__shared__ unsigned char *dB;
__shared__ sd::graph::RandomGenerator *devBuffer;
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
buffer = (sd::graph::RandomGenerator *) shmem;
cB = shmem;
devBuffer = reinterpret_cast<sd::graph::RandomGenerator *> (state);
dB = reinterpret_cast<unsigned char *> (state);
length = shape::length(zShapeBuffer);
ews = shape::elementWiseStride(zShapeBuffer);
}
__syncthreads();
// using this loop instead of memcpy
for (int e = threadIdx.x; e < sizeof(sd::graph::RandomGenerator); e+= blockDim.x)
cB[e] = dB[e];
__syncthreads();
int tid = blockIdx.x * blockDim.x + threadIdx.x;
if (ews > 0) {
for (Nd4jLong i = tid; i < length; i += blockDim.x * gridDim.x) {
z[i * ews] = OpClass::op(i, length, buffer, extraArguments);
}
} else {
for (Nd4jLong i = tid; i < length; i += blockDim.x * gridDim.x) {
auto zOffset2 = shape::getIndexOffset(i, zShapeBuffer);
z[zOffset2] = OpClass::op(i, length, buffer, extraArguments);
}
}
}
template <>
_CUDA_H void RandomFunction<float>::executeCudaSingle(dim3& launchDims, cudaStream_t* stream, int opNum, Nd4jPointer stateHost, void *vz, Nd4jLong const* zShapeBuffer, void *vextraArguments) {
auto z = reinterpret_cast<float*>(vz);
auto extraArguments = reinterpret_cast<float*>(vextraArguments);
// this macro builds bunch of IF/ELSE selectors for kernel launch
DISPATCH_SIMPLE(randomSingle, float, PARAMS(stateHost, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DEBUG_KERNEL(stream, opNum);
}
template <>
_CUDA_H void RandomFunction<float16>::executeCudaSingle(dim3& launchDims, cudaStream_t* stream, int opNum, Nd4jPointer stateHost, void *vz, Nd4jLong const* zShapeBuffer, void *vextraArguments) {
auto z = reinterpret_cast<float16*>(vz);
auto extraArguments = reinterpret_cast<float16*>(vextraArguments);
// this macro builds bunch of IF/ELSE selectors for kernel launch
DISPATCH_SIMPLE(randomSingle, float16, PARAMS(stateHost, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DEBUG_KERNEL(stream, opNum);
}
template <>
_CUDA_H void RandomFunction<bfloat16>::executeCudaSingle(dim3& launchDims, cudaStream_t* stream, int opNum, Nd4jPointer stateHost, void *vz, Nd4jLong const* zShapeBuffer, void *vextraArguments) {
auto z = reinterpret_cast<bfloat16*>(vz);
auto extraArguments = reinterpret_cast<bfloat16*>(vextraArguments);
// this macro builds bunch of IF/ELSE selectors for kernel launch
DISPATCH_SIMPLE(randomSingle, bfloat16, PARAMS(stateHost, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DEBUG_KERNEL(stream, opNum);
}
template <>
_CUDA_H void RandomFunction<double>::executeCudaSingle(dim3& launchDims, cudaStream_t *stream, int opNum, Nd4jPointer stateHost, void *vz, Nd4jLong const* zShapeBuffer, void *vextraArguments) {
auto z = reinterpret_cast<double*>(vz);
auto extraArguments = reinterpret_cast<double*>(vextraArguments);
// this macro builds bunch of IF/ELSE selectors for kernel launch
DISPATCH_SIMPLE(randomSingle, double, PARAMS(stateHost, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DEBUG_KERNEL(stream, opNum);
}
template <>
_CUDA_H void RandomFunction<float>::executeCudaDouble(dim3& launchDims, cudaStream_t* stream, int opNum, Nd4jPointer stateHost, void const* vx, Nd4jLong const* xShapeBuffer, void *vz, Nd4jLong const* zShapeBuffer, void *vextraArguments) {
auto x = reinterpret_cast<float const*>(vx);
auto z = reinterpret_cast<float*>(vz);
auto extraArguments = reinterpret_cast<float*>(vextraArguments);
// this macro builds bunch of IF/ELSE selectors for kernel launch
DISPATCH_SIMPLE(randomDouble, float, PARAMS(stateHost, x, xShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DEBUG_KERNEL(stream, opNum);
}
template <>
_CUDA_H void RandomFunction<float16>::executeCudaDouble(dim3& launchDims, cudaStream_t* stream, int opNum, Nd4jPointer stateHost, void const* vx, Nd4jLong const* xShapeBuffer, void *vz, Nd4jLong const* zShapeBuffer, void *vextraArguments) {
auto x = reinterpret_cast<float16 const*>(vx);
auto z = reinterpret_cast<float16*>(vz);
auto extraArguments = reinterpret_cast<float16*>(vextraArguments);
// this macro builds bunch of IF/ELSE selectors for kernel launch
DISPATCH_SIMPLE(randomDouble, float16, PARAMS(stateHost, x, xShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DEBUG_KERNEL(stream, opNum);
}
template <>
_CUDA_H void RandomFunction<bfloat16>::executeCudaDouble(dim3& launchDims, cudaStream_t* stream, int opNum, Nd4jPointer stateHost, void const* vx, Nd4jLong const* xShapeBuffer, void *vz, Nd4jLong const* zShapeBuffer, void *vextraArguments) {
auto x = reinterpret_cast<bfloat16 const*>(vx);
auto z = reinterpret_cast<bfloat16*>(vz);
auto extraArguments = reinterpret_cast<bfloat16*>(vextraArguments);
// this macro builds bunch of IF/ELSE selectors for kernel launch
DISPATCH_SIMPLE(randomDouble, bfloat16, PARAMS(stateHost, x, xShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DEBUG_KERNEL(stream, opNum);
}
template <>
_CUDA_H void RandomFunction<double>::executeCudaDouble(dim3& launchDims, cudaStream_t* stream, int opNum, Nd4jPointer stateHost, void const* vx, Nd4jLong const* xShapeBuffer, void *vz, Nd4jLong const* zShapeBuffer, void *vextraArguments) {
auto x = reinterpret_cast<double const*>(vx);
auto z = reinterpret_cast<double*>(vz);
auto extraArguments = reinterpret_cast<double*>(vextraArguments);
// this macro builds bunch of IF/ELSE selectors for kernel launch
DISPATCH_SIMPLE(randomDouble, double, PARAMS(stateHost, x, xShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DEBUG_KERNEL(stream, opNum);
}
template <>
_CUDA_H void RandomFunction<float>::executeCudaTriple(dim3& launchDims, cudaStream_t* stream, int opNum, Nd4jPointer stateHost, void const* vx, Nd4jLong const* xShapeBuffer, void const* vy, Nd4jLong const* yShapeBuffer, void *vz, Nd4jLong const* zShapeBuffer, void *vextraArguments) {
auto x = reinterpret_cast<float const*>(vx);
auto y = reinterpret_cast<float const*>(vy);
auto z = reinterpret_cast<float*>(vz);
auto extraArguments = reinterpret_cast<float*>(vextraArguments);
// this macro builds bunch of IF/ELSE selectors for kernel launch
DISPATCH_SIMPLE(randomTriple, float, PARAMS(stateHost, x, xShapeBuffer, y, yShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DEBUG_KERNEL(stream, opNum);
}
template <>
_CUDA_H void RandomFunction<float16>::executeCudaTriple(dim3& launchDims, cudaStream_t* stream, int opNum, Nd4jPointer stateHost, void const* vx, Nd4jLong const* xShapeBuffer, void const* vy, Nd4jLong const* yShapeBuffer, void *vz, Nd4jLong const* zShapeBuffer, void *vextraArguments) {
auto x = reinterpret_cast<float16 const*>(vx);
auto y = reinterpret_cast<float16 const*>(vy);
auto z = reinterpret_cast<float16*>(vz);
auto extraArguments = reinterpret_cast<float16*>(vextraArguments);
// this macro builds bunch of IF/ELSE selectors for kernel launch
DISPATCH_SIMPLE(randomTriple, float16, PARAMS(stateHost, x, xShapeBuffer, y, yShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DEBUG_KERNEL(stream, opNum);
}
template <>
_CUDA_H void RandomFunction<bfloat16>::executeCudaTriple(dim3& launchDims, cudaStream_t* stream, int opNum, Nd4jPointer stateHost, void const* vx, Nd4jLong const* xShapeBuffer, void const* vy, Nd4jLong const* yShapeBuffer, void *vz, Nd4jLong const* zShapeBuffer, void *vextraArguments) {
auto x = reinterpret_cast<bfloat16 const*>(vx);
auto y = reinterpret_cast<bfloat16 const*>(vy);
auto z = reinterpret_cast<bfloat16*>(vz);
auto extraArguments = reinterpret_cast<bfloat16*>(vextraArguments);
// this macro builds bunch of IF/ELSE selectors for kernel launch
DISPATCH_SIMPLE(randomTriple, bfloat16, PARAMS(stateHost, x, xShapeBuffer, y, yShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DEBUG_KERNEL(stream, opNum);
}
template <>
_CUDA_H void RandomFunction<double>::executeCudaTriple(dim3& launchDims, cudaStream_t* stream, int opNum, Nd4jPointer stateHost, void const* vx, Nd4jLong const* xShapeBuffer, void const* vy, Nd4jLong const* yShapeBuffer, void *vz, Nd4jLong const* zShapeBuffer, void *vextraArguments) {
auto x = reinterpret_cast<double const*>(vx);
auto y = reinterpret_cast<double const*>(vy);
auto z = reinterpret_cast<double*>(vz);
auto extraArguments = reinterpret_cast<double*>(vextraArguments);
// this macro builds bunch of IF/ELSE selectors for kernel launch
DISPATCH_SIMPLE(randomTriple, double, PARAMS(stateHost, x, xShapeBuffer, y, yShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
DEBUG_KERNEL(stream, opNum);
}
BUILD_SINGLE_TEMPLATE(template class ND4J_EXPORT RandomFunction, , FLOAT_TYPES);
}
}