* fix double consumption of rng on cpu Signed-off-by: raver119 <raver119@gmail.com> * Shyrma docs (#222) * - documenting and profiling matrix_set_diag cuda kernel Signed-off-by: Yurii <yurii@skymind.io> * - correct formula of pnorm pooling in cuda 2d/3d kernels - remove helper matrix_diag which duplicates work of helper matrix_set_diag Signed-off-by: Yurii <yurii@skymind.io> * cublasHandle sharing + lock Signed-off-by: raver119 <raver119@gmail.com> * cublasHandle sharing + lock Signed-off-by: raver119 <raver119@gmail.com> * Documentation from serialization/deserialization in NLP (#221) * refactoring Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * Javadocs Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * Javadoc fixed Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * Cleanup Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * dedicated lock for getCudaCublasHandle Signed-off-by: raver119 <raver119@gmail.com> * Small fixes (#223) Signed-off-by: AlexDBlack <blacka101@gmail.com> * ELU DL4J fixes (#224) Signed-off-by: AlexDBlack <blacka101@gmail.com> * javadoc (#225) Signed-off-by: Robert Altena <Rob@Ra-ai.com> * Small test compilation fix (#226) Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8182 remove spark version suffix (#227) Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] Thread safety (#229) * sync after cublas*gemm Signed-off-by: raver119 <raver119@gmail.com> * mutex for CublasHelper Signed-off-by: raver119 <raver119@gmail.com> * don't store cublasHandle in LaunchContext, it's per-device anyway Signed-off-by: raver119 <raver119@gmail.com> * some printout Signed-off-by: raver119 <raver119@gmail.com> * check for field instead Signed-off-by: raver119 <raver119@gmail.com> * pew-pew Signed-off-by: raver119 <raver119@gmail.com> * don't release ContextBuffers until device changed Signed-off-by: raver119 <raver119@gmail.com> * small tweak Signed-off-by: raver119 <raver119@gmail.com> * some logging in sgemm Signed-off-by: raver119 <raver119@gmail.com> * stream sync Signed-off-by: raver119 <raver119@gmail.com> * some more logging Signed-off-by: raver119 <raver119@gmail.com> * some more error checks Signed-off-by: raver119 <raver119@gmail.com> * one fancy test Signed-off-by: raver119 <raver119@gmail.com> * one fancy test Signed-off-by: raver119 <raver119@gmail.com> * minor AffinityManager fix Signed-off-by: raver119 <raver119@gmail.com> * cudaEvent error logging improvement Signed-off-by: raver119 <raver119@gmail.com> * ConstantHelper thread safety Signed-off-by: raver119 <raver119@gmail.com> * - minor corrections in ConstantTadHelper Signed-off-by: Yurii <yurii@skymind.io> * ConstantShapeHelper thread safety Signed-off-by: raver119 <raver119@gmail.com> * ConstantTadHelper.cu updated Signed-off-by: raver119 <raver119@gmail.com> * logging off Signed-off-by: raver119 <raver119@gmail.com> * logging off Signed-off-by: raver119 <raver119@gmail.com>
102 lines
4.4 KiB
Plaintext
102 lines
4.4 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Yurii Shyrma (iuriish@yahoo.com)
|
|
//
|
|
|
|
#include "ResultSet.h"
|
|
#include <ops/declarable/helpers/matrixSetDiag.h>
|
|
#include <PointersManager.h>
|
|
|
|
namespace nd4j {
|
|
namespace ops {
|
|
namespace helpers {
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
__global__ static void matrixSetDiagCuda(const void* vx, const Nd4jLong* xShapeInfo, const void* vy, const Nd4jLong* yShapeInfo, void* vz, const Nd4jLong* zShapeInfo, const bool zeroPad) {
|
|
|
|
// x - input, shape [A,B,C]
|
|
// y - diagonal, shape [A,B]
|
|
// z - output, shape [A,B,C]
|
|
// input and output are the same array (x == z) when zeroPad = true
|
|
|
|
const auto x = reinterpret_cast<const T*>(vx);
|
|
const auto y = reinterpret_cast<const T*>(vy);
|
|
auto z = reinterpret_cast<T*>(vz);
|
|
|
|
__shared__ int xRank; // xRank = zRank, xRank = yRank + 1
|
|
__shared__ Nd4jLong xLen, *sharedMem; // xLen = zLen
|
|
__shared__ bool areSameOffsets;
|
|
|
|
if (threadIdx.x == 0) {
|
|
|
|
extern __shared__ unsigned char shmem[];
|
|
sharedMem = reinterpret_cast<Nd4jLong*>(shmem);
|
|
|
|
areSameOffsets = shape::haveSameShapeAndStrides(xShapeInfo, zShapeInfo); // shapes are definitely the same, but strides might not
|
|
|
|
xRank = shape::rank(xShapeInfo);
|
|
xLen = shape::length(xShapeInfo);
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
auto coords = sharedMem + threadIdx.x * xRank; // we provide (xRank * sizeof(Nd4jLong) * threadIdx.x) amount of shared memory per each thread
|
|
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
for (Nd4jLong i = tid; i < xLen; i += gridDim.x * blockDim.x) {
|
|
|
|
shape::index2coords(xRank, xShapeInfo + 1, i, xLen, coords);
|
|
|
|
const auto xOffset = shape::getOffset(0, xShapeInfo + 1, xShapeInfo + xRank + 1, coords, xRank);
|
|
const auto zOffset = areSameOffsets ? xOffset : shape::getOffset(0, zShapeInfo + 1, zShapeInfo + xRank + 1, coords, xRank);
|
|
|
|
// condition to be on diagonal of innermost matrix
|
|
if(coords[xRank - 2] == coords[xRank - 1])
|
|
z[zOffset] = y[shape::getOffset(0, yShapeInfo + 1, yShapeInfo + xRank, coords, xRank - 1)];
|
|
else
|
|
z[zOffset] = zeroPad ? static_cast<T>(0) : x[xOffset];
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
static void matrixSetDiagCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const void* vx, const Nd4jLong* xShapeInfo, const void* vy, const Nd4jLong* yShapeInfo, void* vz, const Nd4jLong* zShapeInfo, const bool zeroPad) {
|
|
|
|
matrixSetDiagCuda<T><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo, zeroPad);
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
void matrixSetDiag(nd4j::LaunchContext* context, const NDArray& input, const NDArray& diagonal, NDArray& output, const bool zeroPad) {
|
|
|
|
const int threadsPerBlock = MAX_NUM_THREADS / 2;
|
|
const int blocksPerGrid = (input.lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
|
|
const int sharedMem = threadsPerBlock * sizeof(Nd4jLong) * input.rankOf() + 128;
|
|
|
|
PointersManager manager(context, "matrixSetDiag");
|
|
|
|
NDArray::prepareSpecialUse({&output}, {&input, &diagonal});
|
|
BUILD_SINGLE_SELECTOR(input.dataType(), matrixSetDiagCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), input.getSpecialBuffer(), input.getSpecialShapeInfo(), diagonal.getSpecialBuffer(), diagonal.getSpecialShapeInfo(), output.specialBuffer(), output.specialShapeInfo(), zeroPad), LIBND4J_TYPES);
|
|
NDArray::registerSpecialUse({&output}, {&input, &diagonal});
|
|
|
|
manager.synchronize();
|
|
}
|
|
|
|
}
|
|
}
|
|
} |