raver119 53ca9a76e8
[WIP] multi-device support (#80)
* fix pad javadoc and @see links. (#72)

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* [WIP] More fixes (#73)

* special tests for ConstantTadHelper/ConstantShapeHelper

Signed-off-by: raver119 <raver119@gmail.com>

* release methods for data buffers

Signed-off-by: raver119 <raver119@gmail.com>

* delete temporary buffer Java side

Signed-off-by: raver119 <raver119@gmail.com>

* delete temporary buffer Java side

Signed-off-by: raver119 <raver119@gmail.com>

* delete temporary TadPack C++/Java side (#74)

Signed-off-by: raver119 <raver119@gmail.com>

* Zoo model TF import test updates (#75)

* argLine fix, update compression_gru comment

* updated comment for xception

* undid but commented argLine change

* updated xlnet comment

* copyright headers

* - new NDArray methods like()/ulike() (#77)

- fix for depthwise_conv2d_bp + special test

Signed-off-by: raver119 <raver119@gmail.com>

* upsampling2d fix CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* DL4J trace logging (#79)

* MLN/CG trace logging for debugging

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Tiny tweak

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* strided_slice_bp shape fn leak fix

Signed-off-by: raver119 <raver119@gmail.com>

* SameDiff fixes and naming (#78)

* remove SDVariable inplace methods

* import methods

* npe fix in OpVal

* removed SameDiff inplace ops from tests

* Naming updates, moved to centralized methods in SameDiff, should use op_#:# for everything

* quick fixes

* javadoc

* SDVariable eval with placeholders

* use regex match

* better matching

* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* fix javadoc. (#76)

* fix javadoc.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* replace most @see with @link s.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* 4 additional tests

Signed-off-by: raver119 <raver119@gmail.com>

* launch context reorganization

Signed-off-by: raver119 <raver119@gmail.com>

* LaunchContext reorganization

Signed-off-by: raver119 <raver119@gmail.com>

* per-device LaunchContext

Signed-off-by: raver119 <raver119@gmail.com>

* Various DL4J/ND4J fixes (#81)

* #7954 Force refresh of UI when switching tabs on overview page

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8017 Concurrent modification exception (synchronize) fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8033 Don't initialize updater in middle of writing memory crash dump

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8208 Fix shape checks for ND4J int[] creator methods

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #6385 #7992 Keras import naming fixes + cleanup

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8016 Upsampling3D - add NDHWC format support

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* ContextBuffers as separate entity

Signed-off-by: raver119 <raver119@gmail.com>

* Refactor NativeOps.h to export C functions

* Actually export functions from NativeOps.h

* Adapt the Java wrappers in ND4J generated with JavaCPP

* Create C wrappers for some of the C++ classes currently used by ND4J

* ContextBuffers as separate entity

Signed-off-by: raver119 <raver119@gmail.com>

* remove duplicate code in createBufferDetached. (#83)

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* Keras model import - updater lr fix (#84)

* Keras model import - updater lr fix

Signed-off-by: eraly <susan.eraly@gmail.com>

* Keras model import - updater lr fix, cleanup

Signed-off-by: eraly <susan.eraly@gmail.com>

* ContextBuffers as separate entity

Signed-off-by: raver119 <raver119@gmail.com>

* ContextBuffers as separate entity

Signed-off-by: raver119 <raver119@gmail.com>

* Fix functions of OpaqueVariablesSet

* thread-local buffers/affinity

Signed-off-by: raver119 <raver119@gmail.com>

* thread safety for LaunchContext

Signed-off-by: raver119 <raver119@gmail.com>

* more of thread safety

Signed-off-by: raver119 <raver119@gmail.com>

* one more multi threaded test

Signed-off-by: raver119 <raver119@gmail.com>

* SameDiff Convolution Config validation, better output methods (#82)

* Conv Config validation & tests

Signed-off-by: Ryan Nett <rnett@skymind.io>

* stackOutputs utility method

Signed-off-by: Ryan Nett <rnett@skymind.io>

* use constructor for validation, support negative kernel sizes (infered from weights)

Signed-off-by: Ryan Nett <rnett@skymind.io>

* better output methods

Signed-off-by: Ryan Nett <rnett@skymind.io>

* move output to be with fit and evaluate

Signed-off-by: Ryan Nett <rnett@skymind.io>

* fixes

Signed-off-by: Ryan Nett <rnett@skymind.io>

* more fixes

Signed-off-by: Ryan Nett <rnett@skymind.io>

* refactor duplicate code from pad methods. (#86)

* refactor duplicate code from pad methods.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* replace switch with if.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* Various ND4J/DL4J fixes and improvements (#87)

* Reshape and reallocate - small fixes

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Reshape and reallocate - small fixes

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #6488 ElementWiseVertex broadcast support

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Constructors and broadcast supported it Transforms.max/min

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8054 ElementWiseVertex now supports broadcast inputs

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8057 Nd4j.create overload dtype fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7551 ND4J Shape validation fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* [WIP] Numpy boolean import (#91)

* numpy bool type

Signed-off-by: raver119 <raver119@gmail.com>

* numpy bool java side

Signed-off-by: raver119 <raver119@gmail.com>

* remove create method with unused parameter. (#89)

* remove create method with unused parameter.

* removed more unused methods.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* removing more unused code.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* last removal of unused code.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* remove createSparse methods. (#92)

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* Various ND4J/DL4J fixes (#90)

* Deprecate Old*Op instances

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8063 #8054 Broadcast exceptions + cleanup inplace ops

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Small fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Remove bad test condition

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7993 Fix shape function issue in crop_and_resize op

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* DL4J SameDiff lambda layer fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8029 Fix for pnorm backprop math

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8038 Fix Op profiler NaN/Inf triggering + add tests (#93)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* createUninitializedDetached refactoring. (#94)

* wip

* update interface, add null implementations.

* Breaking one test in a weird way.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* createUninitializedDetached refactored.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* cuda build fix for issues introduced by recent refactoring

Signed-off-by: raver119 <raver119@gmail.com>

* [WIP] More of CUDA (#95)

* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* Implementation of hashcode cuda helper. Working edition.

* Fixed parallel test input arangements.

* Fixed tests for hashcode op.

* Fixed shape calculation for image:crop_and_resize op and test.

* NativeOps tests. Initial test suite.

* Added tests for indexReduce methods.

* Added test on execBroadcast with NDArray as dimensions.

* Added test on execBroadcastBool with NDArray as dimensions.

* Added tests on execPairwiseTransform and execPairwiseTransofrmBool.

* Added tests for execReduce with scalar results.

* Added reduce tests for non-empty dims array.

* Added tests for reduce3.

* Added tests for execScalar.

* Added tests for execSummaryStats.

* - provide cpu/cuda code for batch_to_space
- testing it

Signed-off-by: Yurii <yurii@skymind.io>

* - remove old test for batch_to_space (had wrong format and numbers were not checked)

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed complilation errors with test.

* Added test for execTransformFloat.

* Added test for execTransformSame.

* Added test for execTransformBool.

* Added test for execTransformStrict.

* Added tests for execScalar/execScalarBool with TADs.

* Added test for flatten.

* - provide cpu/cuda code for space_to_Batch operaion

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for concat.

* comment unnecessary stuff in s_t_b

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for specialConcat.

* Added tests for memcpy/set routines.

* Fixed pullRow cuda test.

* Added pullRow test.

* Added average test.

* - correct typo in NDArray::applyPairwiseTransform(nd4j::pairwise::BoolOps op...)

Signed-off-by: Yurii <yurii@skymind.io>

* - debugging and fixing cuda tests in JavaInteropTests file

Signed-off-by: Yurii <yurii@skymind.io>

* - correct some tests

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for shuffle.

* Fixed ops declarations.

* Restored omp and added shuffle test.

* Added convertTypes test.

* Added tests for execRandom. Eliminated usage of RandomBuffer with NativeOps.

* Added sort tests.

* Added tests for execCustomOp.

* - further debuging and fixing tests terminated with crash

Signed-off-by: Yurii <yurii@skymind.io>

* Added tests for calculateOutputShapes.

* Addded Benchmarks test.

* Commented benchmark tests.

* change assertion

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for apply_sgd op. Added cpu helper for that op.

* Implement cuda helper for aplly_sgd op. Fixed tests for NativeOps.

* Added test for assign broadcastable.

* Added tests for assign_bp op.

* Added tests for axpy op.

* - assign/execScalar/execTransformAny signature change
- minor test fix

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed axpy op.

* meh

Signed-off-by: raver119 <raver119@gmail.com>

* - fix tests for nativeOps::concat

Signed-off-by: Yurii <yurii@skymind.io>

* sequential transform/scalar

Signed-off-by: raver119 <raver119@gmail.com>

* allow nested parallelism

Signed-off-by: raver119 <raver119@gmail.com>

* assign_bp leak fix

Signed-off-by: raver119 <raver119@gmail.com>

* block setRNG fix

Signed-off-by: raver119 <raver119@gmail.com>

* enable parallelism by default

Signed-off-by: raver119 <raver119@gmail.com>

* enable nested parallelism by default

Signed-off-by: raver119 <raver119@gmail.com>

* Added cuda implementation for row_count helper.

* Added implementation for tnse gains op helper.

* - take into account possible situations when input arrays are empty in reduce_ cuda stuff

Signed-off-by: Yurii <yurii@skymind.io>

* Implemented tsne/edge_forces op cuda-based helper. Parallelized cpu-based helper for edge_forces.

* Added kernel for tsne/symmetrized op heleper.

* Implementation of tsne/symmetrized op cuda helper. Working edition.

* Eliminated waste printfs.

* Added test for broadcastgradientargs op.

* host-only fallback for empty reduce float

Signed-off-by: raver119 <raver119@gmail.com>

* - some tests fixes

Signed-off-by: Yurii <yurii@skymind.io>

* - correct the rest of reduce_ stuff

Signed-off-by: Yurii <yurii@skymind.io>

* - further correction of reduce_ stuff

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for Cbow op. Also added cuda implementation for cbow helpers.

* - improve code of stack operation for scalar case

Signed-off-by: Yurii <yurii@skymind.io>

* - provide cuda kernel for gatherND operation

Signed-off-by: Yurii <yurii@skymind.io>

* Implementation of cbow helpers with cuda kernels.

* minor tests tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* minor tests tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* - further correction of cuda stuff

Signed-off-by: Yurii <yurii@skymind.io>

* Implementatation of cbow op helper with cuda kernels. Working edition.

* Skip random testing for cudablas case.

* lstmBlockCell context fix

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for ELU and ELU_BP ops.

* Added tests for eq_scalar, gt_scalar, gte_scalar and lte_scalar ops.

* Added tests for neq_scalar.

* Added test for noop.

* - further work on clipbynorm_bp

Signed-off-by: Yurii <yurii@skymind.io>

* - get rid of concat op call, use instead direct concat helper call

Signed-off-by: Yurii <yurii@skymind.io>

* lstmBlockCell context fix

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for lrelu and lrelu_bp.

* Added tests for selu and selu_bp.

* Fixed lrelu derivative helpers.

* - some corrections in lstm

Signed-off-by: Yurii <yurii@skymind.io>

* operator * result shape fix

Signed-off-by: raver119 <raver119@gmail.com>

* - correct typo in lstmCell

Signed-off-by: Yurii <yurii@skymind.io>

* few tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA inverse broadcast bool fix

Signed-off-by: raver119 <raver119@gmail.com>

* disable MMAP test for CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* BooleanOp syncToDevice

Signed-off-by: raver119 <raver119@gmail.com>

* meh

Signed-off-by: raver119 <raver119@gmail.com>

* additional data types for im2col/col2im

Signed-off-by: raver119 <raver119@gmail.com>

* Added test for firas_sparse op.

* one more RandomBuffer test excluded

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for flatten op.

* Added test for Floor op.

* bunch of tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* mmulDot tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* Implemented floordiv_bp op and tests.

* Fixed scalar case with cuda implementation for bds.

* - work on cuda kernel for clip_by_norm backprop op is completed

Signed-off-by: Yurii <yurii@skymind.io>

* Eliminate cbow crach.

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* Eliminated abortion with batched nlp test.

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed shared flag initializing.

* disabled bunch of cpu workspaces tests

Signed-off-by: raver119 <raver119@gmail.com>

* scalar operators fix: missing registerSpecialUse call

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed logdet for cuda and tests.

* - correct clipBynorm_bp

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed crop_and_resize shape datatype.

* - correct some mmul tests

Signed-off-by: Yurii <yurii@skymind.io>

* build fix

Signed-off-by: raver119 <raver119@gmail.com>

* exclude two methods for JNI

Signed-off-by: raver119 <raver119@gmail.com>

* exclude two methods for JNI

Signed-off-by: raver119 <raver119@gmail.com>

* exclude two methods for JNI (#97)

Signed-off-by: raver119 <raver119@gmail.com>

* temporary stack fix

Signed-off-by: raver119 <raver119@gmail.com>

* round robin affinity test

Signed-off-by: raver119 <raver119@gmail.com>

* get rid of legacy CudaContext methods

Signed-off-by: raver119 <raver119@gmail.com>

* get rid of legacy ContextPool classes/methods

Signed-off-by: raver119 <raver119@gmail.com>

* one legacy test removed

Signed-off-by: raver119 <raver119@gmail.com>

* few more fields rearranged

Signed-off-by: raver119 <raver119@gmail.com>

* OpaqueLaunchContext

Signed-off-by: raver119 <raver119@gmail.com>

* OpaqueLaunchContext++

Signed-off-by: raver119 <raver119@gmail.com>

* more of OpaqueLaunchContext methods

Signed-off-by: raver119 <raver119@gmail.com>

* LaunchContext -> CudaContext

Signed-off-by: raver119 <raver119@gmail.com>

* AffinityManger changes

Signed-off-by: raver119 <raver119@gmail.com>

* AffinityManger changes

Signed-off-by: raver119 <raver119@gmail.com>

* cusolver handles

Signed-off-by: raver119 <raver119@gmail.com>

* typo

Signed-off-by: raver119 <raver119@gmail.com>

* cusolver method

Signed-off-by: raver119 <raver119@gmail.com>

* cusolver handle propagated

Signed-off-by: raver119 <raver119@gmail.com>

* blas/solver handles

Signed-off-by: raver119 <raver119@gmail.com>

* one more test

Signed-off-by: raver119 <raver119@gmail.com>

* legacy concat implementations replaced with new CustomOp

Signed-off-by: raver119 <raver119@gmail.com>

* one more test

Signed-off-by: raver119 <raver119@gmail.com>

* concat now uses way more blocks

Signed-off-by: raver119 <raver119@gmail.com>

* print

Signed-off-by: raver119 <raver119@gmail.com>

* no more triple template mmul

Signed-off-by: raver119 <raver119@gmail.com>

* bunch of kernels have dtypes reconsidered

Signed-off-by: raver119 <raver119@gmail.com>

* bunch of kernels have dtypes reconsidered

Signed-off-by: raver119 <raver119@gmail.com>

* bitonic sort reorganized

Signed-off-by: raver119 <raver119@gmail.com>

* bunch of cpu stuff removed from cuda scope

Signed-off-by: raver119 <raver119@gmail.com>

* bunch of cpu stuff removed from cuda scope

Signed-off-by: raver119 <raver119@gmail.com>

* type conversions moved to generic impl

Signed-off-by: raver119 <raver119@gmail.com>

* cpu data types pass

Signed-off-by: raver119 <raver119@gmail.com>

* non_max_suppression

Signed-off-by: raver119 <raver119@gmail.com>

* sortByValue fix

Signed-off-by: raver119 <raver119@gmail.com>

* ignore all mixed datatype tests for mmul

Signed-off-by: raver119 <raver119@gmail.com>

* special handling of OpProfiler exceptions

Signed-off-by: raver119 <raver119@gmail.com>

* - one failing concat test in cpp
- Nd4j.tile now uses op internally

Signed-off-by: raver119 <raver119@gmail.com>

* get back dtype exception for legacy arrays deserialization

Signed-off-by: raver119 <raver119@gmail.com>
2019-08-14 16:52:34 +03:00

421 lines
20 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
// @author Yurii Shyrma (iuriish@yahoo.com)
//
#include <ops/declarable/helpers/lrn.h>
#include <Status.h>
#include <ConstantTadHelper.h>
namespace nd4j {
namespace ops {
namespace helpers {
#ifdef HAVE_MKLDNN
using namespace mkldnn;
static void getMKLDNNMemoryDescLrn(const NDArray* src, const NDArray* diff_src, const NDArray* dst,
mkldnn::memory::desc* lrn_src_md, mkldnn::memory::desc* lrn_diff_src_md, mkldnn::memory::desc* lrn_dst_md,
mkldnn::memory::desc* user_src_md, mkldnn::memory::desc* user_diff_src_md, mkldnn::memory::desc* user_dst_md, int axis) {
const Nd4jLong* shape = src->getShapeInfo();
long rank = shape[0];
long dim1 = axis; // MKL-DNN supports only 1 axis, which has to be the "channel" one
long dim2 = axis >= 2 ? 1 : 2;
long dim3 = axis >= 3 ? 2 : 3;
mkldnn::memory::dims lrn_src_tz = { (int)shape[1], (int)shape[dim1 + 1], rank > 2 ? (int)shape[dim2 + 1] : 1, rank > 3 ? (int)shape[dim3 + 1] : 1};
auto type = mkldnn::memory::data_type::f32;
auto format = axis == 1 ? mkldnn::memory::format::nchw : mkldnn::memory::format::nhwc;
auto supposed_to_be_any_format = format; // doesn't work with "any"
if (src != nullptr && src->getBuffer() != nullptr && lrn_src_md != nullptr) {
*lrn_src_md = mkldnn::memory::desc({ lrn_src_tz }, type, supposed_to_be_any_format);
*user_src_md = mkldnn::memory::desc({ lrn_src_tz }, type, format);
user_src_md->data.format = mkldnn_blocked;
user_src_md->data.layout_desc.blocking.strides[0][0] = src->stridesOf()[0];
user_src_md->data.layout_desc.blocking.strides[0][1] = src->stridesOf()[dim1];
user_src_md->data.layout_desc.blocking.strides[0][2] = rank > 2 ? src->stridesOf()[dim2] : 1;
user_src_md->data.layout_desc.blocking.strides[0][3] = rank > 3 ? src->stridesOf()[dim3] : 1;
}
if (diff_src != nullptr && diff_src->getBuffer() != nullptr && lrn_diff_src_md != nullptr) {
*lrn_diff_src_md = mkldnn::memory::desc({ lrn_src_tz }, type, supposed_to_be_any_format);
*user_diff_src_md = mkldnn::memory::desc({ lrn_src_tz }, type, format);
user_diff_src_md->data.format = mkldnn_blocked;
user_diff_src_md->data.layout_desc.blocking.strides[0][0] = diff_src->stridesOf()[0];
user_diff_src_md->data.layout_desc.blocking.strides[0][1] = diff_src->stridesOf()[dim1];
user_diff_src_md->data.layout_desc.blocking.strides[0][2] = rank > 2 ? diff_src->stridesOf()[dim2] : 1;
user_diff_src_md->data.layout_desc.blocking.strides[0][3] = rank > 3 ? diff_src->stridesOf()[dim3] : 1;
}
if (dst != nullptr && dst->getBuffer() != nullptr && lrn_dst_md != nullptr) {
*lrn_dst_md = mkldnn::memory::desc({ lrn_src_tz }, type, supposed_to_be_any_format);
*user_dst_md = mkldnn::memory::desc({ lrn_src_tz }, type, format);
user_dst_md->data.format = mkldnn_blocked;
user_dst_md->data.layout_desc.blocking.strides[0][0] = dst->stridesOf()[0];
user_dst_md->data.layout_desc.blocking.strides[0][1] = dst->stridesOf()[dim1];
user_dst_md->data.layout_desc.blocking.strides[0][2] = rank > 2 ? dst->stridesOf()[dim2] : 1;
user_dst_md->data.layout_desc.blocking.strides[0][3] = rank > 3 ? dst->stridesOf()[dim3] : 1;
}
}
#endif
template <typename T>
static int lrnFunctor_(nd4j::graph::Context& block, NDArray* input, NDArray* output, int depth, float bias, float alpha, float beta) {
#ifdef HAVE_MKLDNN
if (block.isUseMKLDNN() && nd4j::MKLDNNStream::isSupported({input, output})) {
std::vector<nd4j::MKLDNNStream>& streams = block.getMKLDNNStreams();
if (streams.empty()) {
streams.push_back(MKLDNNStream("lrn"));
}
if (streams[0].checkAndReset({input}, {output}, {(float)bias, (float)alpha, (float)beta}, {depth})) {
mkldnn_memory_desc_t empty;
mkldnn::memory::desc lrn_src_md(empty), lrn_dst_md(empty), user_src_md(empty), user_dst_md(empty);
getMKLDNNMemoryDescLrn(input, nullptr, output, &lrn_src_md, nullptr, &lrn_dst_md, &user_src_md, nullptr, &user_dst_md, input->rankOf() - 1);
auto lrn_desc = lrn_forward::desc(prop_kind::forward_inference, lrn_across_channels, lrn_src_md, (2 * depth + 1), alpha * (2 * depth + 1), beta, bias);
auto engine = streams[0].getEngine();
auto lrn_prim_desc = lrn_forward::primitive_desc(lrn_desc, engine);
auto user_src_memory = mkldnn::memory({user_src_md, engine}, input->buffer());
auto user_dst_memory = mkldnn::memory({user_dst_md, engine}, output->buffer());
auto lrn_src_memory = user_src_memory;
streams[0].addMemory(user_src_memory);
if (mkldnn::memory::primitive_desc(lrn_prim_desc.src_primitive_desc())
!= user_src_memory.get_primitive_desc()) {
lrn_src_memory = mkldnn::memory(lrn_prim_desc.src_primitive_desc());
streams[0].addMemory(lrn_src_memory);
streams[0].addOperation(reorder(user_src_memory, lrn_src_memory));
}
auto lrn_dst_memory = user_dst_memory;
streams[0].addMemory(user_dst_memory);
if (mkldnn::memory::primitive_desc(lrn_prim_desc.dst_primitive_desc())
!= user_dst_memory.get_primitive_desc()) {
lrn_dst_memory = mkldnn::memory(lrn_prim_desc.dst_primitive_desc());
streams[0].addMemory(lrn_dst_memory);
}
streams[0].addOperation(lrn_forward(lrn_prim_desc, lrn_src_memory, lrn_dst_memory));
if (mkldnn::memory::primitive_desc(lrn_prim_desc.dst_primitive_desc())
!= user_dst_memory.get_primitive_desc()) {
streams[0].addOperation(reorder(lrn_dst_memory, user_dst_memory));
}
}
streams[0].submitAndWait();
return ND4J_STATUS_OK;
}
#endif
nd4j_debug("MKL-DNN is not used for lrn!\n", 0);
const int rank = input->rankOf();
TadPack inTadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), {rank - 1});
TadPack outTadPack;
if(shape::haveSameShapeAndStrides(input->getShapeInfo(), output->getShapeInfo()))
outTadPack = inTadPack;
else
outTadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), {rank - 1});
const Nd4jLong numOfTads = inTadPack.numberOfTads();
const Nd4jLong tadLen = input->sizeAt(-1);
const Nd4jLong* inTadOffsets = inTadPack.primaryOffsets();
const Nd4jLong* outTadOffsets = outTadPack.primaryOffsets();
const Nd4jLong inTadEws = shape::elementWiseStride(inTadPack.primaryShapeInfo());
const Nd4jLong outTadEws = shape::elementWiseStride(outTadPack.primaryShapeInfo());
const T* inBuff = reinterpret_cast<T*>(input->getBuffer());
T* outBuff = reinterpret_cast<T*>(output->getBuffer());
const T tbias = static_cast<T>(bias);
const T tbeta = static_cast<T>(beta);
const T talpha = static_cast<T>(alpha);
if(inTadEws == 1 && outTadEws == 1) {
PRAGMA_OMP_PARALLEL_FOR_SIMD
for (uint i = 0; i < numOfTads; ++i) {
const T* x = inBuff + inTadOffsets[i];
T* y = outBuff + outTadOffsets[i];
T prev = 0;
// calculate squared sum of elements per each j-th element range [j - depth, j + depth + 1]
// we store each squared sum in corresponding element of y array
for (uint j = 0; j < tadLen; ++j) {
const uint begin = nd4j::math::nd4j_max<int>(0, j - depth);
const uint last = depth + j + 1;
const uint end = nd4j::math::nd4j_min<int>(last, tadLen);
if (j == 0) {
for (uint s = begin; s < end; ++s)
prev = prev + x[s] * x[s];
y[j] = prev;
}
else if (begin == 0 && last <= tadLen)
y[j] = prev + x[end - 1] * x[end - 1];
else if (begin > 0 && last <= tadLen)
y[j] = prev + x[end - 1] * x[end - 1] - x[begin - 1] * x[begin - 1];
else if (begin > 0 && last > tadLen)
y[j] = prev - x[begin - 1] * x[begin - 1];
else
y[j] = prev;
if(j != 0)
prev = y[j];
y[j] = x[j] / nd4j::math::nd4j_pow<T, T, T>(tbias + alpha * prev, tbeta);
}
}
}
else {
PRAGMA_OMP_PARALLEL_FOR_SIMD
for (uint i = 0; i < numOfTads; ++i) {
const T* x = inBuff + inTadOffsets[i];
T* y = outBuff + outTadOffsets[i];
T prev = 0;
// calculate squared sum of elements per each j-th element range [j - depth, j + depth + 1]
// we store each squared sum in corresponding element of y array
for (uint j = 0; j < tadLen; ++j) {
const uint begin = nd4j::math::nd4j_max<int>(0, j - depth);
const uint last = depth + j + 1;
const uint end = nd4j::math::nd4j_min<int>(last, tadLen);
if (j == 0) {
for (uint s = begin; s < end; ++s)
prev = prev + x[s*inTadEws] * x[s*inTadEws];
y[j*outTadEws] = prev;
}
else if (begin == 0 && last <= tadLen)
y[j*outTadEws] = prev + x[(end - 1)*inTadEws] * x[(end - 1)*inTadEws];
else if (begin > 0 && last <= tadLen)
y[j*outTadEws] = prev + x[(end - 1)*inTadEws] * x[(end - 1)*inTadEws] - x[(begin - 1)*inTadEws] * x[(begin - 1)*inTadEws];
else if (begin > 0 && last > tadLen)
y[j*outTadEws] = prev - x[(begin - 1)*inTadEws] * x[(begin - 1)*inTadEws];
else
y[j*outTadEws] = prev;
if(j != 0)
prev = y[j*outTadEws];
y[j*outTadEws] = x[j*inTadEws] / nd4j::math::nd4j_pow<T, T, T>(tbias + alpha * prev, tbeta);
}
}
}
return Status::OK();
}
BUILD_SINGLE_TEMPLATE(template int lrnFunctor_, (nd4j::graph::Context& block, NDArray* input, NDArray* output, int depth, float bias, float alpha, float beta), FLOAT_TYPES);
int lrnFunctor(nd4j::graph::Context& block, NDArray* input, NDArray* output, int depth, double bias, double alpha, double beta) {
BUILD_SINGLE_SELECTOR(input->dataType(), return lrnFunctor_, (block, input, output, depth, bias, alpha, beta), FLOAT_TYPES);
}
//////////////////////////////////////////////////////////////////////////
template <typename X, typename Y>
static void lrnBP_(const NDArray& input, const NDArray& gradO, NDArray& gradI, const int depth, const float bias, const float alpha, const float beta) {
const int rank = input.rankOf();
TadPack inTadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input.getShapeInfo(), {rank - 1});
TadPack gradITadPack;
if(shape::haveSameShapeAndStrides(input.getShapeInfo(), gradI.getShapeInfo()))
gradITadPack = inTadPack;
else
gradITadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(gradI.getShapeInfo(), {rank - 1});
const Nd4jLong numOfTads = inTadPack.numberOfTads();
const Nd4jLong tadLen = input.sizeAt(-1);
const Nd4jLong* inTadOffsets = inTadPack.primaryOffsets();
const Nd4jLong* gradITadOffsets = gradITadPack.primaryOffsets();
const Nd4jLong inTadEws = shape::elementWiseStride(inTadPack.primaryShapeInfo());
const Nd4jLong gradITadEws = shape::elementWiseStride(gradITadPack.primaryShapeInfo());
const X* inBuff = reinterpret_cast<X*>(input.getBuffer());
Y* gradIBuff = reinterpret_cast<Y*>(gradI.getBuffer());
const Y tbias = static_cast<Y>(bias);
const Y tbeta = static_cast<Y>(beta);
const Y talpha = static_cast<Y>(alpha);
const Y coeff = talpha * tbeta;
if(inTadEws == 1 && gradITadEws == 1) {
PRAGMA_OMP_PARALLEL_FOR_SIMD
for (uint i = 0; i < numOfTads; ++i) {
const X* x = inBuff + inTadOffsets[i];
Y* y = gradIBuff + gradITadOffsets[i];
// this loop calculates squared sum of elements per each j-th element range [j - depth, j + depth + 1]
// we store each squared sum in corresponding element of y array
for (uint j = 0; j < tadLen; ++j) {
const uint begin = nd4j::math::nd4j_max<int>(0, j - depth);
const uint last = depth + j + 1;
const uint end = nd4j::math::nd4j_min<int>(last, tadLen);
if (j == 0) {
y[0] = 0;
for (uint s = begin; s < end; ++s)
y[0] = y[0] + x[s] * x[s];
}
else if (begin == 0 && last <= tadLen)
y[j] = y[j - 1] + x[end - 1] * x[end - 1];
else if (begin > 0 && last <= tadLen)
y[j] = y[j - 1] + x[end - 1] * x[end - 1] - x[begin - 1] * x[begin - 1];
else if (begin > 0 && last > tadLen)
y[j] = y[j - 1] - x[begin - 1] * x[begin - 1];
else
y[j] = y[j - 1];
}
Y* factor = new Y[tadLen];
Y prev = 0;
// second loop calculates derivatives using information gained in first loop above
for (uint j = 0; j < tadLen; ++j) {
const uint begin = nd4j::math::nd4j_max<int>(0, j - depth);
const uint last = depth + j + 1;
const uint end = nd4j::math::nd4j_min<int>(last, tadLen);
Y init = tbias + talpha * y[j];
if (j == 0) {
for (uint s = begin; s < end; ++s) {
factor[s] = nd4j::math::nd4j_pow<Y, Y, Y>(tbias + talpha * y[s], -tbeta - 1);
prev = prev + x[s] * factor[s];
}
y[0] = prev;
}
else if(begin == 0 && last <= tadLen) {
factor[end - 1] = nd4j::math::nd4j_pow<Y, Y, Y>(tbias + talpha * y[end - 1], -tbeta - 1);
y[j] = prev + x[end - 1] * factor[end - 1];
}
else if (begin > 0 && last <= tadLen) {
factor[end - 1] = nd4j::math::nd4j_pow<Y, Y, Y>(tbias + talpha * y[end - 1], -tbeta - 1);
y[j] = prev + x[end - 1] * factor[end - 1] - x[begin - 1] * factor[begin - 1];
}
else if (begin > 0 && last > tadLen)
y[j] = prev - x[begin - 1] * factor[begin - 1];
else
y[j] = prev;
if(j != 0)
prev = y[j];
y[j] = factor[j] * init - 2 * x[j] * coeff * prev;
}
delete []factor;
}
}
else {
PRAGMA_OMP_PARALLEL_FOR_SIMD
for (uint i = 0; i < numOfTads; ++i) {
const X* x = inBuff + inTadOffsets[i];
Y* y = gradIBuff + gradITadOffsets[i];
// this loop calculates squared sum of elements per each j-th element range [j - depth, j + depth + 1]
// we store each squared sum in corresponding element of y array
for (uint j = 0; j < tadLen; ++j) {
const uint begin = nd4j::math::nd4j_max<int>(0, j - depth);
const uint last = depth + j + 1;
const uint end = nd4j::math::nd4j_min<int>(last, tadLen);
if (j == 0) {
y[0] = 0;
for (uint s = begin; s < end; ++s)
y[0] = y[0] + x[s*inTadEws] * x[s*inTadEws];
}
else if (begin == 0 && last <= tadLen)
y[j*gradITadEws] = y[(j - 1)*gradITadEws] + x[(end - 1)*inTadEws] * x[(end - 1)*inTadEws];
else if (begin > 0 && last <= tadLen)
y[j*gradITadEws] = y[(j - 1)*gradITadEws] + x[(end - 1)*inTadEws] * x[(end - 1)*inTadEws] - x[(begin - 1)*inTadEws] * x[(begin - 1)*inTadEws];
else if (begin > 0 && last > tadLen)
y[j*gradITadEws] = y[(j - 1)*gradITadEws] - x[(begin - 1)*inTadEws] * x[(begin - 1)*inTadEws];
else
y[j*gradITadEws] = y[(j - 1)*gradITadEws];
}
Y* factor = new Y[tadLen];
Y prev = 0;
// second loop calculates derivatives using information gained in first loop above
for (uint j = 0; j < tadLen; ++j) {
const uint begin = nd4j::math::nd4j_max<int>(0, j - depth);
const uint last = depth + j + 1;
const uint end = nd4j::math::nd4j_min<int>(last, tadLen);
Y init = tbias + talpha * y[j*gradITadEws];
if (j == 0) {
for (uint s = begin; s < end; ++s) {
factor[s] = nd4j::math::nd4j_pow<Y, Y, Y>(tbias + talpha * y[s*gradITadEws], -tbeta - 1);
prev = prev + x[s*inTadEws] * factor[s];
}
y[0] = prev;
}
else if(begin == 0 && last <= tadLen) {
factor[end - 1] = nd4j::math::nd4j_pow<Y, Y, Y>(tbias + talpha * y[(end - 1)*gradITadEws], -tbeta - 1);
y[j*gradITadEws] = prev + x[(end - 1)*inTadEws] * factor[end - 1];
}
else if (begin > 0 && last <= tadLen) {
factor[end - 1] = nd4j::math::nd4j_pow<Y, Y, Y>(tbias + talpha * y[(end - 1)*gradITadEws], -tbeta - 1);
y[j*gradITadEws] = prev + x[(end - 1)*inTadEws] * factor[end - 1] - x[(begin - 1)*inTadEws] * factor[begin - 1];
}
else if (begin > 0 && last > tadLen)
y[j*gradITadEws] = prev - x[(begin - 1)*inTadEws] * factor[begin - 1];
else
y[j*gradITadEws] = prev;
if(j != 0)
prev = y[j*gradITadEws];
y[j*gradITadEws] = factor[j] * init - 2 * x[j*inTadEws] * coeff * prev;
}
delete []factor;
}
}
gradI *= gradO;
}
void lrnBP(nd4j::graph::Context& block, const NDArray& input, const NDArray& gradO, NDArray& gradI, const int depth, const float bias, const float alpha, const float beta) {
BUILD_DOUBLE_SELECTOR(input.dataType(), gradO.dataType(), lrnBP_, (input, gradO, gradI, depth, bias, alpha, beta), FLOAT_TYPES, FLOAT_TYPES);
}
}
}
}