67 lines
3.4 KiB
C++
67 lines
3.4 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author raver119@gmail.com
|
|
//
|
|
|
|
#ifndef LIBND4J_AGGREGATES_H
|
|
#define LIBND4J_AGGREGATES_H
|
|
|
|
#include <ops/aggregate_ops.h>
|
|
#include <helpers/DebugHelper.h>
|
|
#include <helpers/helper_ptrmap.h>
|
|
|
|
namespace functions {
|
|
namespace aggregate {
|
|
|
|
template<typename X>
|
|
class AggregatedFunction {
|
|
|
|
public:
|
|
#ifdef __CUDACC__
|
|
template<typename OpClass>
|
|
__device__ static void execCuda(X **arguments, int numArguments, Nd4jLong **shapeArguments, int numShapeArguments, int *indexArguments, int numIndexArguments, int **intArrays, int numIntArrays, X *realArguments, int numRealArguments);
|
|
|
|
__device__ static void execCuda(int opNum, X **arguments, int numArguments, Nd4jLong **shapeArguments, int numShapeArguments, int *indexArguments, int numIndexArguments, int **intArrays, int numIntArrays, X *realArguments, int numRealArguments);
|
|
|
|
__device__ static void aggregateBatch(int numAggregates, int opNum, int maxArgs, int maxShapes, int maxIntArrays, int maxIntArraySize, int maxIdx, int maxReals, void *ptrToArguments);
|
|
|
|
__host__ static void aggregateBatchKernelGeneric(dim3& launchDims, cudaStream_t *stream, int opNum, int numAggregates, int maxArgs, int maxShapes, int maxIntArrays, int maxIntArraySize, int maxIdx, int maxReals, void *ptrToArguments);
|
|
|
|
__host__ static void aggregateKernelGeneric(dim3& launchDims, cudaStream_t *stream, int opNum, void **arguments, int numArguments, Nd4jLong **shapeArguments, int numShapeArguments, int *indexArguments, int numIndexArguments, int **intArrays, int numIntArrays, void *realArguments, int numRealArguments);
|
|
|
|
#endif
|
|
|
|
template<typename OpClass>
|
|
inline static void exec(X **arguments, int numArguments, Nd4jLong **shapeArguments, int numShapeArguments, int *indexArguments, int numIndexArguments, int **intArrays, int numIntArrays, X *realArguments, int numRealArguments) {
|
|
OpClass::executeAggregate(arguments, numArguments, shapeArguments, numShapeArguments, indexArguments, numIndexArguments, intArrays, numIntArrays, realArguments, numRealArguments);
|
|
}
|
|
|
|
inline static void exec(int opNum, X **arguments, int numArguments, Nd4jLong **shapeArguments, int numShapeArguments, int *indexArguments, int numIndexArguments, int **intArrays, int numIntArrays, X *realArguments, int numRealArguments) {
|
|
DISPATCH_BY_OPNUM_T(exec, PARAMS(arguments, numArguments, shapeArguments, numShapeArguments, indexArguments, numIndexArguments, intArrays, numIntArrays, realArguments, numRealArguments), AGGREGATE_OPS);
|
|
}
|
|
};
|
|
}
|
|
}
|
|
|
|
#ifdef __CUDACC__
|
|
|
|
|
|
#endif
|
|
|
|
#endif //LIBND4J_AGGREGATES_H
|