* - specifying template instantiation for certain types in float16 and bloat16 Signed-off-by: Yurii <iuriish@yahoo.com> * - polishing bfloat16 and float16 member functions template specialization Signed-off-by: Yurii <iuriish@yahoo.com> * - rewrite and overload array +-*/ scalar and scalar +-*/ arr in NDAray class Signed-off-by: Yurii <iuriish@yahoo.com> * - make corrections which have to do with and rvalue lvalue conversions Signed-off-by: Yurii <iuriish@yahoo.com> * - provide move semantic in NDArray operators array +-/* array Signed-off-by: Yurii <iuriish@yahoo.com> * float16/bfloat16 tweaks Signed-off-by: raver119 <raver119@gmail.com> * one more tweak Signed-off-by: raver119 <raver119@gmail.com> * - make float16 and bfloat16 to compile successfully on cuda Signed-off-by: Yurii <iuriish@yahoo.com> * - do not use resources of view-like arrays when move semantics is applied Signed-off-by: Yurii <iuriish@yahoo.com> * - get rid of pointers in signatures NDArray methods 1 Signed-off-by: Yurii <iuriish@yahoo.com> * - correction of signature of NDArray::dup method Signed-off-by: Yurii <iuriish@yahoo.com> * - correction of signature of NDArray::reduceAlongDimension method Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyIndexReduce and applyTrueBroadcast methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyReduce3 and varianceAlongDimension methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::tensorsAlongDimension and diagonal methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::allTensorsAlongDimension Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::reduceAlongDimension 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyTransform 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyPairwiseTransform 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyBroadcast 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyTrueBroadcast 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyScalar and applyScalarArr Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::lambda methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::reduce3 methods 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of following NDArray methods: add/sub/mul/div row/column and fillAsTriangular Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::tileToShape methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::isShapeSameStrict method Signed-off-by: Yurii <iuriish@yahoo.com> * minor corrections in tests Signed-off-by: Yurii <iuriish@yahoo.com> * - replace reduce op in batchnorm mkldnn Signed-off-by: Yurii <iuriish@yahoo.com> * - add explicit templates instantiations for operator+(NDArray&&. const scalar) Signed-off-by: Yurii <iuriish@yahoo.com> * - corrections of casts in float16/bfloat16 Signed-off-by: Yurii <iuriish@yahoo.com> * - provide move semantics in following NDArray methods: transform, applyTrueBroadcast, transpose, reshape, permute Signed-off-by: Yurii <iuriish@yahoo.com> * - get rid of input array A duplicate in svd cuda op Signed-off-by: Yurii <iuriish@yahoo.com> * - avoid available bug in svd cuda API Signed-off-by: Yurii <iuriish@yahoo.com> * - add temporary global memory buffer in svd cuda when calcUV = false and m != n Signed-off-by: Yurii <iuriish@yahoo.com> * - remove test with blfoat16 type for betainC Signed-off-by: Yurii <iuriish@yahoo.com> * - resolve conflicts after master has been merged in Signed-off-by: Yurii <iuriish@yahoo.com> * - changed type of affected input array in fused_batch_norm Signed-off-by: Yurii <iuriish@yahoo.com> * - add several explicit type castings Signed-off-by: Yurii <iuriish@yahoo.com> * - add ND4J_EXPORT to operators Signed-off-by: Yurii <iuriish@yahoo.com> * - add explicit template types in instantiations of template arithm operators of NDArray class Signed-off-by: Yurii <iuriish@yahoo.com> * - one more test fix Signed-off-by: Yurii <iuriish@yahoo.com> Co-authored-by: raver119 <raver119@gmail.com>
220 lines
6.0 KiB
Plaintext
220 lines
6.0 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author raver119@gmail.com
|
|
//
|
|
|
|
#include "testlayers.h"
|
|
#include <array/ExtraArguments.h>
|
|
#include <array>
|
|
#include <cuda.h>
|
|
#include <cuda_runtime.h>
|
|
|
|
using namespace nd4j;
|
|
|
|
class LambdaTests : public testing::Test {
|
|
public:
|
|
|
|
LambdaTests() {
|
|
printf("\n");
|
|
fflush(stdout);
|
|
}
|
|
};
|
|
|
|
template <typename Lambda>
|
|
__global__ void runLambda(double *input, double *output, Nd4jLong length, Lambda lambda) {
|
|
auto tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
for (Nd4jLong e = tid; e < length; e += gridDim.x * blockDim.x) {
|
|
output[e] = lambda(input[e]);
|
|
}
|
|
}
|
|
|
|
void launcher(cudaStream_t *stream, double *input, double *output, Nd4jLong length) {
|
|
//auto f = [] __host__ __device__ (double x) -> double {
|
|
// return x + 1.;
|
|
//};
|
|
auto f = LAMBDA_D(x) {
|
|
return x+1.;
|
|
};
|
|
|
|
|
|
runLambda<<<128, 128, 128, *stream>>>(input, output, length, f);
|
|
}
|
|
|
|
|
|
TEST_F(LambdaTests, test_basic_1) {
|
|
auto x = NDArrayFactory::create<double>('c', {5});
|
|
auto e = NDArrayFactory::create<double>('c', {5}, {1., 1., 1., 1., 1.});
|
|
|
|
|
|
|
|
//x.applyLambda<double>(f, nullptr);
|
|
launcher(LaunchContext::defaultContext()->getCudaStream(), (double *)x.specialBuffer(), (double *)x.specialBuffer(), x.lengthOf());
|
|
auto res = cudaStreamSynchronize(*LaunchContext::defaultContext()->getCudaStream());
|
|
ASSERT_EQ(0, res);
|
|
|
|
ASSERT_EQ(e, x);
|
|
}
|
|
|
|
void test(NDArray &x) {
|
|
auto f = LAMBDA_D(x) {
|
|
return x+1.;
|
|
};
|
|
|
|
x.applyLambda(f, x);
|
|
}
|
|
|
|
template <typename T>
|
|
void test2(NDArray &x) {
|
|
auto f = LAMBDA_T(x) {
|
|
return x+1.;
|
|
};
|
|
|
|
x.applyLambda(f, x);
|
|
}
|
|
|
|
void testPairwise(NDArray &x, NDArray &y) {
|
|
auto f = LAMBDA_DD(x, y) {
|
|
return x + y +1.;
|
|
};
|
|
|
|
x.applyPairwiseLambda(y, f, x);
|
|
}
|
|
|
|
void testTriplewise(NDArray &i, NDArray &j, NDArray &k) {
|
|
auto f = LAMBDA_DDD(i, j, k) {
|
|
return i + j + k + 2.;
|
|
};
|
|
|
|
i.applyTriplewiseLambda(j, k, f, i);
|
|
}
|
|
|
|
void testIndexed(NDArray &x) {
|
|
auto f = ILAMBDA_D(x) {
|
|
return _idx + 1.;
|
|
};
|
|
|
|
x.applyIndexedLambda(f, x);
|
|
}
|
|
|
|
void testIndexedPairwise(NDArray &x, NDArray &y) {
|
|
auto f = ILAMBDA_DD(x, y) {
|
|
return _idx + x + y +1.;
|
|
};
|
|
|
|
x.applyIndexedPairwiseLambda(y, f, x);
|
|
}
|
|
|
|
TEST_F(LambdaTests, test_basic_2) {
|
|
auto x = NDArrayFactory::create<double>('c', {5});
|
|
auto e = NDArrayFactory::create<double>('c', {5}, {1., 1., 1., 1., 1.});
|
|
|
|
test(x);
|
|
|
|
ASSERT_EQ(e, x);
|
|
}
|
|
|
|
TEST_F(LambdaTests, test_basic_3) {
|
|
auto x = NDArrayFactory::create<float>('c', {5});
|
|
auto e = NDArrayFactory::create<float>('c', {5}, {1.f, 1.f, 1.f, 1.f, 1.f});
|
|
|
|
test(x);
|
|
|
|
ASSERT_EQ(e, x);
|
|
}
|
|
|
|
TEST_F(LambdaTests, test_basic_4) {
|
|
auto x = NDArrayFactory::create<float>('c', {5});
|
|
auto e = NDArrayFactory::create<float>('c', {5}, {1.f, 1.f, 1.f, 1.f, 1.f});
|
|
|
|
test2<float>(x);
|
|
|
|
ASSERT_EQ(e, x);
|
|
}
|
|
|
|
TEST_F(LambdaTests, test_basic_5) {
|
|
auto x = NDArrayFactory::create<double>('c', {5}, {1., 1., 1., 1., 1.});
|
|
auto y = NDArrayFactory::create<double>('c', {5}, {2., 2., 2., 2., 2.});
|
|
auto e = NDArrayFactory::create<double>('c', {5}, {4., 4., 4., 4., 4.});
|
|
|
|
testPairwise(x, y);
|
|
|
|
ASSERT_EQ(e, x);
|
|
}
|
|
|
|
TEST_F(LambdaTests, test_basic_6) {
|
|
auto x = NDArrayFactory::create<double>('c', {5});
|
|
auto e = NDArrayFactory::create<double>('c', {5}, {1., 2., 3., 4., 5.});
|
|
|
|
testIndexed(x);
|
|
|
|
ASSERT_EQ(e, x);
|
|
}
|
|
|
|
TEST_F(LambdaTests, test_basic_7) {
|
|
auto w = NDArrayFactory::create<double>('c', {5}, {0., 0., 0., 0., 0.});
|
|
auto x = NDArrayFactory::create<double>('c', {5}, {1., 1., 1., 1., 1.});
|
|
auto y = NDArrayFactory::create<double>('c', {5}, {2., 2., 2., 2., 2.});
|
|
auto e = NDArrayFactory::create<double>('c', {5}, {5., 5., 5., 5., 5.});
|
|
|
|
testTriplewise(w, x, y);
|
|
|
|
ASSERT_EQ(e, w);
|
|
}
|
|
|
|
TEST_F(LambdaTests, test_basic_8) {
|
|
auto x = NDArrayFactory::create<double>('c', {5}, {1., 1., 1., 1., 1.});
|
|
auto y = NDArrayFactory::create<double>('c', {5}, {2., 2., 2., 2., 2.});
|
|
auto e = NDArrayFactory::create<double>('c', {5}, {4., 5., 6., 7., 8.});
|
|
|
|
testIndexedPairwise(x, y);
|
|
|
|
ASSERT_EQ(e, x);
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
void testPairwiseMy(NDArray &x, NDArray &y, NDArray &z) {
|
|
|
|
auto f = LAMBDA_TT(x, y){
|
|
return nd4j::math::nd4j_max<T>(x, (T)0.f)
|
|
- x * y
|
|
+ nd4j::math::nd4j_log<T,T>((T)1.f
|
|
+ nd4j::math::nd4j_exp<T,T>(-nd4j::math::nd4j_abs(x)));
|
|
};
|
|
|
|
x.applyPairwiseLambda(y, f, z);
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
TEST_F(LambdaTests, test_basic_9) {
|
|
|
|
NDArray labels('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
NDArray logits('c', {2,3,4}, nd4j::DataType::DOUBLE);
|
|
NDArray output('c', {2,3,4}, nd4j::DataType::DOUBLE);
|
|
NDArray expected('c', {2,3,4}, {0.744397, 0.598139, 0.554355, 0.913015, 0.474077, 1.037488, 0.403186, 1.171101, 0.341154, 1.313262, 0.287335, 1.463282, 0.241008, 1.620417, 0.201413, 1.783901, 0.167786, 1.952978, 2.039387, 0.126928, 0.115520, 2.305083, 0.095545, 2.486836});
|
|
|
|
logits.linspace(0.1, 0.1);
|
|
|
|
NDArray::prepareSpecialUse({&output}, {&logits, &labels});
|
|
testPairwiseMy<double>(logits, labels, output);
|
|
NDArray::registerSpecialUse({&output}, {&logits, &labels});
|
|
|
|
// output.printBuffer(nullptr, -1, true);
|
|
ASSERT_TRUE(expected.equalsTo(output));
|
|
}
|