614 lines
20 KiB
C++
614 lines
20 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author raver119@gmail.com, created on 07.10.2017.
|
|
// @author Yurii Shyrma (iuriish@yahoo.com)
|
|
//
|
|
|
|
|
|
#include <pointercast.h>
|
|
#include <helpers/shape.h>
|
|
#include <helpers/TAD.h>
|
|
#include <specials.h>
|
|
#include <dll.h>
|
|
#include <NDArray.h>
|
|
#include <ops/declarable/CustomOperations.h>
|
|
#include <types/types.h>
|
|
#include <helpers/Loops.h>
|
|
|
|
namespace nd4j {
|
|
/**
|
|
* Concatneate multi array of the same shape together
|
|
* along a particular dimension
|
|
*/
|
|
// template <typename T>
|
|
// void SpecialMethods<T>::concatCpuGeneric(const std::vector<NDArray*>& inArrs, NDArray& output, const int axis) {
|
|
// const uint numOfArrs = inArrs.size();
|
|
|
|
// int outDim;
|
|
// const bool isOutputVector = output.isCommonVector(outDim);
|
|
|
|
// if(isOutputVector || (axis == 0 && output.ordering() == 'c')) {
|
|
|
|
// bool allVectorsOrScalars = true;
|
|
// const uint outEws = isOutputVector ? output.stridesOf()[outDim] : output.ews();
|
|
|
|
// std::vector<int> nonUnityDim(numOfArrs);
|
|
// std::vector<Nd4jLong> zOffset(numOfArrs);
|
|
|
|
// for(int i = 0; i < numOfArrs; i++) {
|
|
// allVectorsOrScalars &= (inArrs[i]->lengthOf() == 1 || inArrs[i]->isCommonVector(nonUnityDim[i]));
|
|
// if(!allVectorsOrScalars)
|
|
// break;
|
|
// if(i == 0) zOffset[0] = 0;
|
|
// else zOffset[i] = zOffset[i - 1] + outEws * inArrs[i - 1]->lengthOf();
|
|
// }
|
|
|
|
// if(allVectorsOrScalars) {
|
|
|
|
// T* outBuff = output.bufferAsT<T>();
|
|
|
|
// auto func = PRAGMA_THREADS_FOR {
|
|
// for (auto r = start; r < stop; r += increment) {
|
|
// const Nd4jLong arrLen = inArrs[r]->lengthOf();
|
|
// const uint xEws = (arrLen == 1) ? 1 : inArrs[r]->stridesOf()[nonUnityDim[r]];
|
|
|
|
// T *z = outBuff + zOffset[r];
|
|
// T *x = inArrs[r]->bufferAsT<T>();
|
|
|
|
// if (outEws == 1 && xEws == 1)
|
|
// for (Nd4jLong e = 0; e < arrLen; e++)
|
|
// z[e] = x[e];
|
|
// else
|
|
// for (Nd4jLong e = 0; e < arrLen; e++)
|
|
// z[e * outEws] = x[e * xEws];
|
|
// }
|
|
// };
|
|
|
|
// samediff::Threads::parallel_tad(func, 0, numOfArrs);
|
|
// return;
|
|
// }
|
|
// }
|
|
|
|
// const int rank = inArrs[0]->rankOf();
|
|
// const int rank2 = 2*rank;
|
|
// std::vector<std::vector<Nd4jLong>> indices(numOfArrs, std::vector<Nd4jLong>(rank2,0));
|
|
|
|
// // take into account indices for first array
|
|
// indices[0][2 * axis + 1] = inArrs[0]->sizeAt(axis);
|
|
|
|
// // loop through the rest of input arrays
|
|
// for(int i = 1; i < numOfArrs; ++i) {
|
|
// indices[i][2 * axis] = indices[i-1][2 * axis + 1]; // index start from
|
|
// indices[i][2 * axis + 1] = indices[i-1][2 * axis + 1] + inArrs[i]->sizeAt(axis); // index end with (excluding)
|
|
// }
|
|
|
|
// auto func = PRAGMA_THREADS_FOR {
|
|
// for (auto i = start; i < stop; i += increment) {
|
|
// auto temp = output(indices[i], true);
|
|
// nd4j::TransformLoops<T, T, T>::template loopTransform<simdOps::Assign<T, T>>( inArrs[i]->bufferAsT<T>(), inArrs[i]->getShapeInfo(), temp.bufferAsT<T>(), temp.getShapeInfo(), nullptr, 0, 1);
|
|
// }
|
|
// };
|
|
|
|
// samediff::Threads::parallel_tad(func, 0, numOfArrs);
|
|
// }
|
|
|
|
template <typename T>
|
|
void SpecialMethods<T>::concatCpuGeneric(const std::vector<NDArray*>& inArrs, NDArray& output, const int axis) {
|
|
|
|
const int numOfInArrs = inArrs.size();
|
|
const auto sizeofT = output.sizeOfT();
|
|
|
|
T* zBuff = output.bufferAsT<T>();
|
|
|
|
bool luckCase1 = ((axis == 0 && output.ordering() == 'c') || (axis == output.rankOf() - 1 && output.ordering() == 'f')) && output.ews() == 1;
|
|
|
|
if(luckCase1) {
|
|
for (uint i = 0; i < numOfInArrs; ++i) {
|
|
luckCase1 &= inArrs[i]->ordering() == output.ordering() && inArrs[i]->ews() == 1;
|
|
if(!luckCase1)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if(luckCase1) { // for example {1,10} + {2,10} + {3,10} = {6, 10} order c; or {10,1} + {10,2} + {10,3} = {10, 6} order f
|
|
|
|
T* z = zBuff;
|
|
for (uint i = 0; i < numOfInArrs; ++i) {
|
|
const auto memAmountToCopy = inArrs[i]->lengthOf();
|
|
memcpy(z, inArrs[i]->bufferAsT<T>(), memAmountToCopy * sizeofT);
|
|
z += memAmountToCopy;
|
|
}
|
|
return;
|
|
}
|
|
|
|
const bool isZcontin = output.strideAt(axis) == 1 && output.ordering() == 'c';
|
|
bool areInputsContin = true;
|
|
bool allSameOrder = true;
|
|
|
|
if(isZcontin) {
|
|
for (uint i = 0; i < numOfInArrs; ++i) {
|
|
areInputsContin &= inArrs[i]->strideAt(axis) == 1;
|
|
allSameOrder &= inArrs[i]->ordering() == output.ordering();
|
|
if(!areInputsContin || !allSameOrder)
|
|
break;
|
|
}
|
|
}
|
|
|
|
const bool luckCase2 = isZcontin && areInputsContin && allSameOrder;
|
|
|
|
if(luckCase2) { // for example {2,1,3} + {2,5,3} + {2,10,3} = {2,16,3}, here axis 1 shoud have stride = 1 for all inputs arrays and output array
|
|
|
|
const uint zDim = output.sizeAt(axis);
|
|
|
|
for (uint i = 0; i < output.lengthOf() / zDim; ++i) {
|
|
T* z = zBuff + zDim * i;
|
|
|
|
for (uint j = 0; j < inArrs.size(); ++j) {
|
|
const auto xDim = inArrs[j]->sizeAt(axis);
|
|
const T* x = inArrs[j]->bufferAsT<T>() + xDim * i;
|
|
memcpy(z, x, xDim * sizeofT);
|
|
z += xDim;
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
// general case
|
|
auto func = PRAGMA_THREADS_FOR {
|
|
|
|
Nd4jLong coords[MAX_RANK];
|
|
|
|
for (auto i = start; i < stop; i += increment) {
|
|
|
|
shape::index2coords(i, output.getShapeInfo(), coords);
|
|
const auto zOffset = shape::getOffset(output.getShapeInfo(), coords);
|
|
|
|
uint inArrIdx = 0;
|
|
uint xDim = inArrs[inArrIdx]->sizeAt(axis);
|
|
|
|
while (coords[axis] >= xDim) {
|
|
coords[axis] -= xDim;
|
|
xDim = inArrs[++inArrIdx]->sizeAt(axis);
|
|
}
|
|
|
|
const T* x = inArrs[inArrIdx]->bufferAsT<T>();
|
|
const auto xOffset = shape::getOffset(inArrs[inArrIdx]->getShapeInfo(), coords);
|
|
|
|
zBuff[zOffset] = x[xOffset];
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_for(func, 0, output.lengthOf());
|
|
}
|
|
|
|
/**
|
|
* Concatneate multi array of the same shape together
|
|
* along a particular dimension
|
|
*/
|
|
template <typename T>
|
|
void SpecialMethods<T>::concatCpuGeneric(int dimension, int numArrays, Nd4jPointer *data, Nd4jPointer *inputShapeInfo, void *vresult, Nd4jLong *resultShapeInfo) {
|
|
auto result = reinterpret_cast<T *>(vresult);
|
|
std::vector<NDArray*> inputs(numArrays);
|
|
|
|
NDArray output(static_cast<void*>(result), static_cast<Nd4jLong*>(resultShapeInfo));
|
|
|
|
for(int i = 0; i < numArrays; ++i)
|
|
inputs[i] = new NDArray(static_cast<void *>(data[i]), static_cast<Nd4jLong*>(inputShapeInfo[i]));
|
|
|
|
nd4j::SpecialMethods<T>::concatCpuGeneric(inputs, output, dimension);
|
|
|
|
for(int i = 0; i < numArrays; ++i)
|
|
delete inputs[i];
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
void SpecialMethods<T>::splitCpuGeneric(const NDArray& input, const std::vector<NDArray*>& outArrs, const int axis) {
|
|
|
|
int numSplits = outArrs.size();
|
|
|
|
const auto sizeofT = input.sizeOfT();
|
|
|
|
T* xBuff = input.bufferAsT<T>();
|
|
|
|
bool luckCase1 = ((axis == 0 && input.ordering() == 'c') || (axis == input.rankOf() - 1 && input.ordering() == 'f')) && input.ews() == 1;
|
|
|
|
if (luckCase1) {
|
|
for (uint i = 0; i < numSplits; ++i) {
|
|
luckCase1 &= outArrs[i]->ordering() == input.ordering() && outArrs[i]->ews() == 1;
|
|
if (!luckCase1)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (luckCase1) {
|
|
|
|
T* x = const_cast<T*>(xBuff);
|
|
for (uint i = 0; i < numSplits; ++i) {
|
|
const auto memAmountToCopy = outArrs[i]->lengthOf();
|
|
memcpy(outArrs[i]->bufferAsT<T>(), x, memAmountToCopy * sizeofT);
|
|
x += memAmountToCopy;
|
|
}
|
|
return;
|
|
}
|
|
|
|
const bool isXcontin = input.strideAt(axis) == 1 && input.ordering() == 'c';
|
|
bool areOutsContin = true;
|
|
bool allSameOrder = true;
|
|
|
|
if (isXcontin) {
|
|
for (uint i = 0; i < numSplits; ++i) {
|
|
areOutsContin &= outArrs[i]->strideAt(axis) == 1;
|
|
allSameOrder &= outArrs[i]->ordering() == input.ordering();
|
|
if (!areOutsContin || !allSameOrder)
|
|
break;
|
|
}
|
|
}
|
|
|
|
const bool luckCase2 = isXcontin && areOutsContin && allSameOrder;
|
|
|
|
if (luckCase2) {
|
|
|
|
const uint xDim = input.sizeAt(axis);
|
|
|
|
for (uint i = 0; i < input.lengthOf() / xDim; ++i) {
|
|
|
|
T* x = xBuff + xDim * i;
|
|
|
|
for (uint j = 0; j < numSplits; ++j) {
|
|
const auto zDim = outArrs[j]->sizeAt(axis);
|
|
T* z = outArrs[j]->bufferAsT<T>() + zDim * i;
|
|
memcpy(z, x, zDim * sizeofT);
|
|
z += zDim;
|
|
x += zDim;
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
uint zDim = outArrs[0]->sizeAt(axis);
|
|
// general case
|
|
|
|
auto func = PRAGMA_THREADS_FOR{
|
|
|
|
Nd4jLong coords[MAX_RANK];
|
|
for (auto i = start; i < stop; i += increment) {
|
|
|
|
shape::index2coords(i, input.getShapeInfo(), coords);
|
|
const auto xOffset = shape::getOffset(input.getShapeInfo(), coords);
|
|
|
|
uint outArrIdx = 0;
|
|
|
|
while (coords[axis] >= zDim) {
|
|
coords[axis] -= zDim;
|
|
++outArrIdx;
|
|
}
|
|
|
|
T* z = outArrs[outArrIdx]->bufferAsT<T>();
|
|
const auto zOffset = shape::getOffset(outArrs[outArrIdx]->getShapeInfo(), coords);
|
|
z[zOffset] = xBuff[xOffset];
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_for(func, 0, input.lengthOf());
|
|
}
|
|
|
|
|
|
/**
|
|
* This kernel accumulates X arrays, and stores result into Z
|
|
*
|
|
* @tparam T
|
|
* @param x
|
|
* @param z
|
|
* @param n
|
|
* @param length
|
|
*/
|
|
template<typename T>
|
|
void SpecialMethods<T>::accumulateGeneric(void **vx, void *vz, Nd4jLong *zShapeInfo, int n, const Nd4jLong length) {
|
|
auto z = reinterpret_cast<T *>(vz);
|
|
auto x = reinterpret_cast<T **>(vx);
|
|
|
|
auto func = PRAGMA_THREADS_FOR {
|
|
for (auto i = start; i < stop; i++) {
|
|
for (auto ar = 0L; ar < n; ar++) {
|
|
z[i] += x[ar][i];
|
|
}
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_for(func, 0, length);
|
|
}
|
|
|
|
|
|
/**
|
|
* This kernel averages X input arrays, and stores result to Z
|
|
*
|
|
* @tparam T
|
|
* @param x
|
|
* @param z
|
|
* @param n
|
|
* @param length
|
|
* @param propagate
|
|
*/
|
|
template<typename T>
|
|
void SpecialMethods<T>::averageGeneric(void **vx, void *vz, Nd4jLong *zShapeInfo, int n, const Nd4jLong length, bool propagate) {
|
|
auto z = reinterpret_cast<T *>(vz);
|
|
auto x = reinterpret_cast<T **>(vx);
|
|
|
|
if (z == nullptr) {
|
|
//code branch for absent Z
|
|
z = x[0];
|
|
|
|
PRAGMA_OMP_SIMD
|
|
for (uint64_t i = 0; i < length; i++) {
|
|
z[i] /= static_cast<T>(n);
|
|
}
|
|
|
|
auto func = PRAGMA_THREADS_FOR {
|
|
for (auto i = start; i < stop; i++) {
|
|
for (Nd4jLong ar = 1; ar < n; ar++) {
|
|
z[i] += x[ar][i] / static_cast<T>(n);
|
|
}
|
|
}
|
|
};
|
|
samediff::Threads::parallel_for(func, 0, length);
|
|
|
|
// instead of doing element-wise propagation, we just issue memcpy to propagate data
|
|
for (Nd4jLong ar = 1; ar < n; ar++) {
|
|
memcpy(x[ar], z, length * sizeof(T));
|
|
}
|
|
} else {
|
|
// code branch for existing Z
|
|
|
|
// memset before propagation
|
|
memset(z, 0, length * sizeof(T));
|
|
|
|
// aggregation step
|
|
auto func = PRAGMA_THREADS_FOR {
|
|
for (auto i = start; i < stop; i++) {
|
|
for (Nd4jLong ar = 0; ar < n; ar++) {
|
|
z[i] += x[ar][i] / static_cast<T>(n);
|
|
}
|
|
}
|
|
};
|
|
samediff::Threads::parallel_for(func, 0, length);
|
|
|
|
// instead of doing element-wise propagation, we just issue memcpy to propagate data
|
|
for (Nd4jLong ar = 0; ar < n; ar++) {
|
|
memcpy(x[ar], z, length * sizeof(T));
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
Nd4jLong SpecialMethods<T>::getPosition(Nd4jLong *xShapeInfo, Nd4jLong index) {
|
|
auto xEWS = shape::elementWiseStride(xShapeInfo);
|
|
|
|
if (xEWS == 1)
|
|
return index;
|
|
else if (xEWS > 1)
|
|
return index * xEWS;
|
|
else
|
|
return shape::getIndexOffset(index, xShapeInfo);
|
|
}
|
|
|
|
template<typename T>
|
|
void SpecialMethods<T>::quickSort_parallel_internal(T* array, Nd4jLong *xShapeInfo, int left, int right, int cutoff, bool descending) {
|
|
|
|
int i = left, j = right;
|
|
T tmp;
|
|
T pivot = array[getPosition(xShapeInfo, (left + right) / 2)];
|
|
|
|
|
|
{
|
|
/* PARTITION PART */
|
|
while (i <= j) {
|
|
if (descending) {
|
|
while (array[getPosition(xShapeInfo, i)] > pivot)
|
|
i++;
|
|
while (array[getPosition(xShapeInfo, j)] < pivot)
|
|
j--;
|
|
if (i <= j) {
|
|
tmp = array[getPosition(xShapeInfo, i)];
|
|
array[getPosition(xShapeInfo, i)] = array[getPosition(xShapeInfo, j)];
|
|
array[getPosition(xShapeInfo, j)] = tmp;
|
|
i++;
|
|
j--;
|
|
}
|
|
} else {
|
|
while (array[getPosition(xShapeInfo, i)] < pivot)
|
|
i++;
|
|
while (array[getPosition(xShapeInfo, j)] > pivot)
|
|
j--;
|
|
if (i <= j) {
|
|
tmp = array[getPosition(xShapeInfo, i)];
|
|
array[getPosition(xShapeInfo, i)] = array[getPosition(xShapeInfo, j)];
|
|
array[getPosition(xShapeInfo, j)] = tmp;
|
|
i++;
|
|
j--;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
//
|
|
|
|
if ( ((right-left)<cutoff) ){
|
|
if (left < j){ quickSort_parallel_internal(array, xShapeInfo, left, j, cutoff, descending); }
|
|
if (i < right){ quickSort_parallel_internal(array, xShapeInfo, i, right, cutoff, descending); }
|
|
|
|
}else{
|
|
PRAGMA_OMP_TASK
|
|
{ quickSort_parallel_internal(array, xShapeInfo, left, j, cutoff, descending); }
|
|
PRAGMA_OMP_TASK
|
|
{ quickSort_parallel_internal(array, xShapeInfo, i, right, cutoff, descending); }
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
void SpecialMethods<T>::quickSort_parallel(void *varray, Nd4jLong *xShapeInfo, Nd4jLong lenArray, int numThreads, bool descending){
|
|
auto array = reinterpret_cast<T *>(varray);
|
|
int cutoff = 1000;
|
|
|
|
PRAGMA_OMP_PARALLEL_THREADS(numThreads)
|
|
{
|
|
PRAGMA_OMP_SINGLE_ARGS(nowait)
|
|
{
|
|
quickSort_parallel_internal(array, xShapeInfo, 0, lenArray-1, cutoff, descending);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
int SpecialMethods<T>::nextPowerOf2(int number) {
|
|
int pos = 0;
|
|
|
|
while (number > 0) {
|
|
pos++;
|
|
number = number >> 1;
|
|
}
|
|
return (int) pow(2, pos);
|
|
}
|
|
|
|
template <typename T>
|
|
int SpecialMethods<T>::lastPowerOf2(int number) {
|
|
int p = 1;
|
|
while (p <= number)
|
|
p <<= 1;
|
|
|
|
p >>= 1;
|
|
return p;
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
void SpecialMethods<T>::sortGeneric(void *vx, Nd4jLong *xShapeInfo, bool descending) {
|
|
auto x = reinterpret_cast<T *>(vx);
|
|
|
|
quickSort_parallel(x, xShapeInfo, shape::length(xShapeInfo), omp_get_max_threads(), descending);
|
|
}
|
|
|
|
template<typename T>
|
|
void SpecialMethods<T>::sortTadGeneric(void *vx, Nd4jLong *xShapeInfo, int *dimension, int dimensionLength, Nd4jLong *tadShapeInfo, Nd4jLong *tadOffsets, bool descending) {
|
|
auto x = reinterpret_cast<T *>(vx);
|
|
|
|
//quickSort_parallel(x, xShapeInfo, shape::length(xShapeInfo), omp_get_max_threads(), descending);
|
|
Nd4jLong xLength = shape::length(xShapeInfo);
|
|
Nd4jLong xTadLength = shape::tadLength(xShapeInfo, dimension, dimensionLength);
|
|
int numTads = xLength / xTadLength;
|
|
|
|
auto func = PRAGMA_THREADS_FOR {
|
|
for (auto r = start; r < stop; r++) {
|
|
T *dx = x + tadOffsets[r];
|
|
|
|
quickSort_parallel(dx, tadShapeInfo, xTadLength, 1, descending);
|
|
}
|
|
};
|
|
samediff::Threads::parallel_tad(func, 0, numTads);
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
void SpecialMethods<T>::decodeBitmapGeneric(void *dx, Nd4jLong N, void *vz, Nd4jLong *zShapeInfo) {
|
|
auto dz = reinterpret_cast<T *>(vz);
|
|
auto x = reinterpret_cast<int *>(dx);
|
|
Nd4jLong lim = N / 16 + 5;
|
|
|
|
FloatBits2 fb;
|
|
fb.i_ = x[2];
|
|
float threshold = fb.f_;
|
|
|
|
|
|
auto func = PRAGMA_THREADS_FOR {
|
|
for (auto e = start; e < stop; e++) {
|
|
for (int bitId = 0; bitId < 16; bitId++) {
|
|
bool hasBit = (x[e] & 1 << (bitId)) != 0;
|
|
bool hasSign = (x[e] & 1 << (bitId + 16)) != 0;
|
|
|
|
if (hasBit) {
|
|
if (hasSign)
|
|
dz[(e - 4) * 16 + bitId] -= static_cast<T>(threshold);
|
|
else
|
|
dz[(e - 4) * 16 + bitId] += static_cast<T>(threshold);
|
|
} else if (hasSign) {
|
|
dz[(e - 4) * 16 + bitId] -= static_cast<T>(threshold / 2);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_for(func, 4, lim);
|
|
}
|
|
|
|
template<typename T>
|
|
Nd4jLong SpecialMethods<T>::encodeBitmapGeneric(void *vx, Nd4jLong *xShapeInfo, Nd4jLong N, int *dz, float threshold) {
|
|
auto dx = reinterpret_cast<T *>(vx);
|
|
|
|
//PRAGMA_OMP_PARALLEL_FOR_ARGS(schedule(guided) proc_bind(close) reduction(+:retVal))
|
|
auto func = PRAGMA_REDUCE_LONG {
|
|
Nd4jLong retVal = 0L;
|
|
|
|
for (auto x = start; x < stop; x += increment) {
|
|
int byte = 0;
|
|
int byteId = x / 16 + 4;
|
|
|
|
for (int f = 0; f < 16; f++) {
|
|
Nd4jLong e = x + f;
|
|
|
|
if (e >= N)
|
|
continue;
|
|
|
|
T val = dx[e];
|
|
T abs = nd4j::math::nd4j_abs<T>(val);
|
|
|
|
int bitId = e % 16;
|
|
|
|
if (abs >= (T) threshold) {
|
|
byte |= 1 << (bitId);
|
|
retVal++;
|
|
|
|
if (val < (T) 0.0f) {
|
|
byte |= 1 << (bitId + 16);
|
|
dx[e] += static_cast<T>(threshold);
|
|
} else {
|
|
dx[e] -= static_cast<T>(threshold);
|
|
}
|
|
} else if (abs >= (T) threshold / (T) 2.0f && val < (T) 0.0f) {
|
|
byte |= 1 << (bitId + 16);
|
|
dx[e] += static_cast<T>(threshold / 2);
|
|
|
|
retVal++;
|
|
}
|
|
}
|
|
|
|
dz[byteId] = byte;
|
|
}
|
|
|
|
return retVal;
|
|
};
|
|
return samediff::Threads::parallel_long(func, LAMBDA_SUML, 0, N, 16);
|
|
}
|
|
}
|
|
|