cavis/libnd4j/include/ops/declarable/helpers/cpu/segment.cpp

1095 lines
48 KiB
C++

/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
//
// @author GS <sgazeos@gmail.com>
//
#include <ops/declarable/helpers/segment.h>
#include <helpers/ShapeUtils.h>
#include <execution/Threads.h>
#include <unordered_map>
namespace sd {
namespace ops {
namespace helpers {
// segment max
template <typename T>
static void segmentMaxFunctor_(NDArray* input, NDArray* indices, NDArray* output) {
//int numClasses = output->sizeAt(0);
// if input is a vector: (as if in doc sample)
Nd4jLong idx = indices->e<Nd4jLong>(0);
if (input->isVector()) {
T val = input->e<T>(0);
for (Nd4jLong e = 1; e < indices->lengthOf(); e++) {
if (idx == indices->e<Nd4jLong>(e)) {
// max
val = sd::math::nd4j_max<T>(val, input->t<T>(e));
}
else {
idx = indices->e<Nd4jLong>(e);
val = input->t<T>(e);
}
output->r<T>(idx) = val;
}
}
else {
std::vector<int> restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
auto listOfTensors = input->allTensorsAlongDimension(restDims);
auto listOfOutTensors = output->allTensorsAlongDimension(restDims);
auto numOfClasses = output->sizeAt(0); // number of classes
std::vector<std::pair<NDArray*, int>> outputs(numOfClasses);
auto maxT = listOfOutTensors.at(idx);
//int pos = 0;
maxT->assign(listOfTensors.at(0));
for (Nd4jLong i = 1; i < indices->lengthOf(); i++) {
if (indices->e<int>(i) == idx) {
for (Nd4jLong e = 0; e < maxT->lengthOf(); e++) {
maxT->r<T>(e) = sd::math::nd4j_max(maxT->t<T>(e), listOfTensors.at(i)->t<T>(e));
}
}
else {
idx = indices->e<Nd4jLong>(i);
maxT = listOfOutTensors.at(idx);
maxT->assign(listOfTensors.at(i));
}
}
}
}
// segmen min
template <typename T>
static void segmentMinFunctor_(NDArray* input, NDArray* indices, NDArray* output) {
//int numClasses = output->sizeAt(0);
// if input is a vector: (as if in doc sample)
Nd4jLong idx = indices->e<Nd4jLong>(0);
if (input->isVector()) {
T val = input->e<T>(0);
for (Nd4jLong e = 1; e < indices->lengthOf(); e++) {
if (idx == indices->e<Nd4jLong>(e)) {
// min
val = sd::math::nd4j_min<T>(val, input->t<T>(e));
}
else {
idx = indices->e<Nd4jLong>(e);
val = input->t<T>(e);
}
output->r<T>(idx) = val;
}
}
else {
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
ResultSet listOfTensors = input->allTensorsAlongDimension(restDims);
ResultSet listOfOutTensors = output->allTensorsAlongDimension(restDims);
int numOfClasses = output->sizeAt(0); // number of classes
std::vector<std::pair<NDArray*, int>> outputs(numOfClasses);
auto minT = listOfOutTensors.at(idx);
int pos = 0;
minT->assign(listOfTensors.at(0));
for (Nd4jLong i = 1; i < indices->lengthOf(); i++) {
if (indices->e<Nd4jLong>(i) == idx) {
for (Nd4jLong e = 0; e < minT->lengthOf(); e++) {
minT->p(e, sd::math::nd4j_min(minT->e<T>(e), listOfTensors.at(i)->e<T>(e)));
}
}
else {
idx = indices->e<Nd4jLong>(i);
minT = listOfOutTensors.at(idx);
minT->assign(listOfTensors.at(i));
}
}
}
}
// segmen mean
template <typename T>
static void segmentMeanFunctor_(NDArray* input, NDArray* indices, NDArray* output) {
int numClasses = output->sizeAt(0);
// if input is a vector: (as if in doc sample)
int idx = indices->e<int>(0);
if (input->isVector()) {
T val = T(0.f);
int count = 0;
for (Nd4jLong e = 0; e < indices->lengthOf(); e++) {
if (idx == indices->e<int>(e)) {
// mean
val += input->e<T>(e);
count++;
}
else {
output->p<T>(idx, val / count);
idx = indices->e<int>(e);
val = input->e<T>(e);
count = 1;
}
output->p<T>(idx, val / count);
}
}
else {
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
auto listOfTensors = input->allTensorsAlongDimension(restDims);
auto listOfOutTensors = output->allTensorsAlongDimension(restDims);
int numOfClasses = output->sizeAt(0); // number of classes
std::vector<std::pair<NDArray*, int>> outputs(numOfClasses);
auto meanT = listOfOutTensors.at(idx);
int count = 1;
auto meanV = meanT->dup();
meanV.assign(listOfTensors.at(0));
for (Nd4jLong i = 1; i < indices->lengthOf(); i++) {
if (indices->e<int>(i) == idx) {
auto func = PRAGMA_THREADS_FOR {
for (auto e = start; e < stop; e++) {
meanV.p<T>(e, meanV.e<T>(e) + listOfTensors.at(i)->e<T>(e));
}
};
samediff::Threads::parallel_for(func, 0, meanT->lengthOf());
count++;
}
else {
//meanT->assign(meanV);
meanV.applyScalar(scalar::Divide, count, *meanT);
idx = indices->e<int>(i);
meanT = listOfOutTensors.at(idx);
meanV.assign(listOfTensors.at(i));
count = 1;
}
meanV.applyScalar(scalar::Divide, count, *meanT);
}
}
}
template <typename T>
static void segmentSumFunctor_(NDArray* input, NDArray* indices, NDArray* output) {
int numClasses = output->sizeAt(0);
// if input is a vector: (as if in doc sample)
int idx = indices->e<int>(0);
if (input->isVector()) {
T val = T(0.f);
int count = 0;
for (Nd4jLong e = 0; e < indices->lengthOf(); e++) {
if (idx == indices->e<int>(e)) {
// sum
val += input->t<T>(e);
}
else {
idx = indices->e<int>(e);
val = input->t<T>(e);
}
output->p(idx, val);
}
}
else {
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
auto listOfTensors = input->allTensorsAlongDimension(restDims);
auto listOfOutTensors = output->allTensorsAlongDimension(restDims);
int numOfClasses = output->sizeAt(0); // number of classes
std::vector<std::pair<NDArray*, int>> outputs(numOfClasses);
auto sumT = listOfOutTensors.at(idx);
for (Nd4jLong i = 0; i < indices->lengthOf(); i++) {
if (indices->e<int>(i) == idx) {
auto func = PRAGMA_THREADS_FOR {
for (auto e = start; e < stop; e++) {
sumT->p(e, sumT->e<T>(e) + listOfTensors.at(i)->e<T>(e));
}
};
samediff::Threads::parallel_for(func, 0, sumT->lengthOf());
}
else {
idx = indices->e<int>(i);
sumT = listOfOutTensors.at(idx);
sumT->assign(listOfTensors.at(i));
}
}
}
}
template <typename T>
static void segmentProdFunctor_(NDArray* input, NDArray* indices, NDArray* output) {
//int numClasses = output->sizeAt(0);
// if input is a vector: (as if in doc sample)
int idx = indices->e<int>(0);
output->assign(1.f);
if (input->isVector()) {
T val = input->e<T>(0);
int count = 0;
for (Nd4jLong e = 1; e < indices->lengthOf(); e++) {
if (idx == indices->e<int>(e)) {
// sum
val *= input->e<T>(e);
}
else {
idx = indices->e<int>(e);
val = input->e<T>(e);
}
output->p(idx, val);
}
}
else {
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
auto listOfTensors = input->allTensorsAlongDimension(restDims);
auto listOfOutTensors = output->allTensorsAlongDimension(restDims);
int numOfClasses = output->sizeAt(0); // number of classes
auto sumT = listOfOutTensors.at(idx);
sumT->assign(listOfTensors.at(0));
for (Nd4jLong i = 1; i < indices->lengthOf(); i++) {
if (indices->e<int>(i) == idx) {
auto func = PRAGMA_THREADS_FOR {
for (auto e = start; e < stop; e++) {
sumT->p(e, sumT->e<T>(e) * listOfTensors.at(i)->e<T>(e));
}
};
samediff::Threads::parallel_for(func, 0, sumT->lengthOf());
}
else {
idx = indices->e<int>(i);
sumT = listOfOutTensors.at(idx);
sumT->assign(listOfTensors.at(i));
}
}
}
}
// template <typename T>
// static bool segmentIndicesValidate_(NDArray* indices, NDArray& aexpected, NDArray& anOutput) {
// }
void segmentMaxFunctor(sd::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* output) {
BUILD_SINGLE_SELECTOR(input->dataType(), segmentMaxFunctor_, (input, indices, output), LIBND4J_TYPES);
}
void segmentMinFunctor(sd::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* output) {
BUILD_SINGLE_SELECTOR(input->dataType(), segmentMinFunctor_, (input, indices, output), LIBND4J_TYPES);
}
void segmentMeanFunctor(sd::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* output) {
BUILD_SINGLE_SELECTOR(input->dataType(), segmentMeanFunctor_, (input, indices, output), LIBND4J_TYPES);
}
void segmentSumFunctor(sd::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* output) {
BUILD_SINGLE_SELECTOR(input->dataType(), segmentSumFunctor_, (input, indices, output), LIBND4J_TYPES);
}
void segmentProdFunctor(sd::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* output) {
BUILD_SINGLE_SELECTOR(input->dataType(), segmentProdFunctor_, (input, indices, output), LIBND4J_TYPES);
}
bool segmentIndicesValidate(sd::LaunchContext * context, NDArray* indices, NDArray& expected, NDArray& output) {
auto val = indices->e(0);
for (Nd4jLong e = 1; e < indices->lengthOf(); e++) {
output = indices->e(e);
if (val.e<Nd4jLong>(0) > output.e<Nd4jLong>(0))
return false;
val = indices->e(e);
}
return true;
}
//BUILD_SINGLE_TEMPLATE(template bool segmentIndicesValidate_, (NDArray*, NDArray&, NDArray&), LIBND4J_TYPES);
BUILD_SINGLE_TEMPLATE(template void segmentProdFunctor_, (NDArray* input, NDArray* indices, NDArray* output), LIBND4J_TYPES);
BUILD_SINGLE_TEMPLATE(template void segmentSumFunctor_, (NDArray* input, NDArray* indices, NDArray* output), LIBND4J_TYPES);
BUILD_SINGLE_TEMPLATE(template void segmentMeanFunctor_, (NDArray* input, NDArray* indices, NDArray* output), LIBND4J_TYPES);
BUILD_SINGLE_TEMPLATE(template void segmentMinFunctor_, (NDArray* input, NDArray* indices, NDArray* output), LIBND4J_TYPES);
BUILD_SINGLE_TEMPLATE(template void segmentMaxFunctor_, (NDArray* input, NDArray* indices, NDArray* output), LIBND4J_TYPES);
// -------------------------------------------------------------------------------------------------------------- //
// Unsorted segment ops
// -------------------------------------------------------------------------------------------------------------- //
bool unsortedSegmentIndicesValidate(sd::LaunchContext * context, NDArray* indices, Nd4jLong expected, Nd4jLong& output) {
Nd4jLong val = indices->e<Nd4jLong>(0);
Nd4jLong maxInd = indices->argMax();
if (indices->e<Nd4jLong>(maxInd) >= expected) {
output = val;
return false;
}
output = expected;
return true;
}
template <typename T>
static void unsortedSegmentMaxFunctor_(NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
// if input is a vector: (as if in doc sample)
//int idx = static_cast<int>((*indices)(0.));
MAP_IMPL<Nd4jLong, std::vector<Nd4jLong>> idxs;//(indices->lengthOf());
for (Nd4jLong e = 0; e < indices->lengthOf(); ++e)
idxs[indices->e<Nd4jLong>(e)].push_back(e);
//std::sort(idxs.begin(), idxs.end());
if (input->isVector()) { // 1D case
T maxVal = DataTypeUtils::max<T>();
output->assign(-maxVal);
for (auto fi = idxs.begin(); fi != idxs.end(); ++fi) {
T val = input->e<T>(fi->second.at(0));
for (Nd4jLong idx = 1; idx < static_cast<Nd4jLong>(fi->second.size()); ++idx) {
val = sd::math::nd4j_max(val, input->e<T>(fi->second.at(idx)));
}
output->p(fi->first, val);
}
}
else {
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
ResultSet listOfTensors = input->allTensorsAlongDimension(restDims);
ResultSet listOfOutTensors = output->allTensorsAlongDimension(restDims);
T maxVal = DataTypeUtils::max<T>();
output->assign(-maxVal);
for (auto fi = idxs.begin(); fi != idxs.end(); ++fi) {
auto outputT = listOfOutTensors.at(fi->first);
outputT->assign(listOfTensors.at(fi->second.at(0)));
for (Nd4jLong idx = 1; idx < static_cast<Nd4jLong>(fi->second.size()); ++idx) {
auto maxT = listOfTensors.at(fi->second.at(idx));
for (Nd4jLong e = 0; e < outputT->lengthOf(); ++e) {
T val = sd::math::nd4j_max(maxT->e<T>(e), outputT->e<T>(e));
outputT->p(e, val);
}
}
}
}
}
void unsortedSegmentMaxFunctor(sd::LaunchContext * context, NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
BUILD_SINGLE_SELECTOR(input->dataType(), unsortedSegmentMaxFunctor_, (input, indices, numOfClasses, output), NUMERIC_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void unsortedSegmentMaxFunctor_, (NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output), NUMERIC_TYPES);
template <typename T>
static void unsortedSegmentMinFunctor_(NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
// if input is a vector: (as if in doc sample)
//int idx = static_cast<int>((*indices)(0.));
MAP_IMPL<Nd4jLong, std::vector<Nd4jLong>> idxs;//(indices->lengthOf());
for (Nd4jLong e = 0; e < indices->lengthOf(); ++e)
idxs[indices->e<Nd4jLong>(e)].push_back(e);
//std::sort(idxs.begin(), idxs.end());
if (input->isVector()) { // 1D case
T maxVal = DataTypeUtils::max<T>();
output->assign(maxVal);
for (auto fi = idxs.begin(); fi != idxs.end(); ++fi) {
T val = input->t<T>(fi->second.at(0));
for (size_t idx = 1; idx < fi->second.size(); ++idx) {
val = sd::math::nd4j_min(val, input->t<T>(fi->second.at(idx)));
}
output->r<T>(fi->first) = val;
}
}
else {
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
ResultSet listOfTensors = input->allTensorsAlongDimension(restDims);
ResultSet listOfOutTensors = output->allTensorsAlongDimension(restDims);
T maxVal = DataTypeUtils::max<T>();
output->assign(maxVal);
for (auto fi = idxs.begin(); fi != idxs.end(); ++fi) {
auto outputT = listOfOutTensors.at(fi->first);
outputT->assign(listOfTensors.at(fi->second.at(0)));
for (size_t idx = 1; idx < fi->second.size(); ++idx) {
auto minT = listOfTensors.at(fi->second.at(idx));
for (Nd4jLong e = 0; e < outputT->lengthOf(); ++e) {
outputT->r<T>(e) = sd::math::nd4j_min(minT->t<T>(e), outputT->t<T>(e));
}
}
//outputT->assign(maxT);
}
}
}
void unsortedSegmentMinFunctor(sd::LaunchContext * context, NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
BUILD_SINGLE_SELECTOR(input->dataType(), unsortedSegmentMinFunctor_, (input, indices, numOfClasses, output),
NUMERIC_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void unsortedSegmentMinFunctor_, (NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output), NUMERIC_TYPES);
void unsortedSegmentMeanFunctor(sd::LaunchContext * context, NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
MAP_IMPL<Nd4jLong, std::vector<Nd4jLong>> idxs;//(indices->lengthOf());
for (Nd4jLong e = 0; e < indices->lengthOf(); ++e)
idxs[indices->e<Nd4jLong>(e)].push_back(e);
//std::sort(idxs.begin(), idxs.end());
if (input->isVector()) { // 1D case
for (auto fi = idxs.begin(); fi != idxs.end(); ++fi) {
double sumValue = input->e<double>(fi->second.at(0));
int loop_size = fi->second.size();
// FIXME: parallelism here?
for (size_t idx = 1; idx < loop_size; ++idx) {
sumValue += input->e<double>(fi->second.at(idx));
}
output->p(fi->first, sumValue / fi->second.size());
}
}
else {
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
ResultSet listOfTensors = input->allTensorsAlongDimension(restDims);
ResultSet listOfOutTensors = output->allTensorsAlongDimension(restDims);
// FIXME: parallelism here?
for (auto fi = idxs.begin(); fi != idxs.end(); ++fi) {
auto outputT = listOfOutTensors.at(fi->first);
outputT->assign(listOfTensors.at(fi->second.at(0)));
Nd4jLong loopSize = fi->second.size();
for (Nd4jLong idx = 1; idx < loopSize; ++idx) {
auto current = listOfTensors.at(fi->second.at(idx));
*outputT += *current;
}
(*outputT) /= double(fi->second.size());
}
}
}
void unsortedSegmentSumFunctor(sd::LaunchContext * context, NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
MAP_IMPL<Nd4jLong, std::vector<Nd4jLong>> idxs;//(indices->lengthOf());
for (Nd4jLong e = 0; e < indices->lengthOf(); ++e)
idxs[indices->e<Nd4jLong>(e)].push_back(e);
if (input->isVector()) { // 1D case
for (auto fi = idxs.begin(); fi != idxs.end(); ++fi) {
double sumValue = input->e<double>(fi->second.at(0));
Nd4jLong loop_size = fi->second.size();
// FIXME: parallelism here?
for (Nd4jLong idx = 1; idx < loop_size; ++idx) {
sumValue += input->e<double>(fi->second.at(idx));
}
output->p(fi->first, sumValue);
}
}
else {
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
ResultSet listOfTensors = input->allTensorsAlongDimension(restDims);
ResultSet listOfOutTensors = output->allTensorsAlongDimension(restDims);
for (auto fi = idxs.begin(); fi != idxs.end(); ++fi) {
auto outputT = listOfOutTensors.at(fi->first);
outputT->assign(listOfTensors.at(fi->second.at(0)));
Nd4jLong loop_size = fi->second.size();
// FIXME: parallelism here?
for (Nd4jLong idx = 1; idx < loop_size; ++idx) {
auto current = listOfTensors.at(fi->second.at(idx));
*(outputT) += *current;
}
//outputT->assign(maxT);
}
}
}
template <typename T>
void unsortedSegmentProdFunctor_(NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
MAP_IMPL<Nd4jLong, std::vector<Nd4jLong>> idxs;//(indices->lengthOf());
for (Nd4jLong e = 0; e < indices->lengthOf(); ++e)
idxs[indices->e<Nd4jLong>(e)].push_back(e);
//std::sort(idxs.begin(), idxs.end());
output->assign(1.f);
if (input->isVector()) { // 1D case
for (auto fi = idxs.begin(); fi != idxs.end(); ++fi) {
T prodValue = input->e<T>(fi->second.at(0));
for (size_t idx = 1; idx < fi->second.size(); ++idx) {
prodValue *= input->e<T>(fi->second.at(idx));
}
output->p(fi->first, prodValue);
}
}
else {
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
ResultSet listOfTensors = input->allTensorsAlongDimension(restDims);
ResultSet listOfOutTensors = output->allTensorsAlongDimension(restDims);
for (auto fi = idxs.begin(); fi != idxs.end(); ++fi) {
auto outputT = listOfOutTensors.at(fi->first);
outputT->assign(listOfTensors.at(fi->second.at(0)));
for (size_t idx = 1; idx < fi->second.size(); ++idx) {
auto current = listOfTensors.at(fi->second.at(idx));
*outputT *= *current;
}
}
}
}
void unsortedSegmentProdFunctor(sd::LaunchContext * context, NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
BUILD_SINGLE_SELECTOR(input->dataType(), unsortedSegmentProdFunctor_, (input, indices, numOfClasses, output), NUMERIC_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void unsortedSegmentProdFunctor_, (NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output), NUMERIC_TYPES);
void unsortedSegmentSqrtNFunctor(sd::LaunchContext * context, NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
MAP_IMPL<Nd4jLong, std::vector<Nd4jLong>> idxs;//(indices->lengthOf());
for (Nd4jLong e = 0; e < indices->lengthOf(); ++e)
idxs[indices->e<Nd4jLong>(e)].push_back(e);
//std::sort(idxs.begin(), idxs.end());
if (input->isVector()) { // 1D case
for (auto fi = idxs.begin(); fi != idxs.end(); ++fi) {
double sumValue = input->e<double>(fi->second.at(0));
for (size_t idx = 1; idx < fi->second.size(); ++idx) {
sumValue += input->e<double>(fi->second.at(idx));
}
output->p(fi->first, sumValue / sd::math::nd4j_sqrt<Nd4jLong, double>(fi->second.size()));
}
}
else {
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
ResultSet listOfTensors = input->allTensorsAlongDimension(restDims);
ResultSet listOfOutTensors = output->allTensorsAlongDimension(restDims);
for (auto fi = idxs.begin(); fi != idxs.end(); ++fi) {
auto outputT = listOfOutTensors.at(fi->first);
outputT->assign(listOfTensors.at(fi->second.at(0)));
for (size_t idx = 1; idx < fi->second.size(); ++idx) {
auto current = listOfTensors.at(fi->second.at(idx));
*outputT += *current;
}
//outputT->assign(maxT);
(*outputT) /= sd::math::nd4j_sqrt<size_t, double>(fi->second.size());
}
}
}
// -------------------------------------------------------------------------------------------------------------- //
// Backpropagate ops helpers
// -------------------------------------------------------------------------------------------------------------- //
// Sorted backpropagate ops
//
// segment max
template <typename T>
int segmentMaxFunctorBP_(sd::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output) {
//int numOfClasses = gradOut->sizeAt(0);
// if input is a vector: (as if in doc sample)
auto tempRes = gradOut->dup();
segmentMaxFunctor_<T>(input, indices, &tempRes);
if (input->isVector()) {
Nd4jLong loop_size = input->lengthOf();
auto func = PRAGMA_THREADS_FOR {
for (auto e = start; e < stop; e++) {
auto classNum = indices->e<Nd4jLong>(e);
if (sd::math::nd4j_abs(tempRes.e<T>(classNum) - input->e<T>(e)) <= T(1.e-6))
output->p(e, gradOut->e<T>(classNum));
}
};
samediff::Threads::parallel_for(func, 0, loop_size);
}
else {
std::vector<int> restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
ResultSet listOfBPTensors = tempRes.allTensorsAlongDimension(restDims);
ResultSet listOfGradOuts = gradOut->allTensorsAlongDimension(restDims);
ResultSet listOfTensors = input->allTensorsAlongDimension(restDims);
ResultSet listOfOutTensors = output->allTensorsAlongDimension(restDims);
//int numOfClasses = tempRes.sizeAt(0); // number of classes
//std::vector<std::pair<NDArray*, int>> outputs(numOfClasses);
auto func = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; i++) {
auto classNum = indices->e<Nd4jLong>(i);
auto current = listOfTensors.at(i);
auto currentOut = listOfOutTensors.at(i);
auto currentGradOut = listOfGradOuts.at(classNum);
for (Nd4jLong e = 0; e < current->lengthOf(); e++) {
if (sd::math::nd4j_abs(listOfBPTensors.at(classNum)->e<T>(e) - current->e<T>(e)) <= T(1.e-6))
currentOut->p(e, currentGradOut->e<T>(e));
}
}
};
samediff::Threads::parallel_tad(func, 0, indices->lengthOf());
}
return ND4J_STATUS_OK;
}
int segmentMaxFunctorBP(sd::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output) {
BUILD_SINGLE_SELECTOR(output->dataType(), return segmentMaxFunctorBP_, (context, input, indices, gradOut, output), NUMERIC_TYPES);
}
BUILD_SINGLE_TEMPLATE(template int segmentMaxFunctorBP_, (sd::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output), NUMERIC_TYPES);
// segmen min
int segmentMinFunctorBP(sd::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output) {
NDArray tempRes = gradOut->dup();
segmentMinFunctor(context, input, indices, &tempRes);
if (input->isVector()) {
auto func = PRAGMA_THREADS_FOR {
for (auto e = start; e < stop; e++) {
auto classNum = indices->e<Nd4jLong>(e);
if (sd::math::nd4j_abs(tempRes.e<double>(classNum) - input->e<double>(e)) < 1.e-5)
output->p(e, gradOut->e<double>(classNum));
}
};
samediff::Threads::parallel_for(func, 0, input->lengthOf());
}
else {
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
ResultSet listOfBPTensors = tempRes.allTensorsAlongDimension(restDims);
ResultSet listOfGradOuts = gradOut->allTensorsAlongDimension(restDims);
ResultSet listOfTensors = input->allTensorsAlongDimension(restDims);
ResultSet listOfOutTensors = output->allTensorsAlongDimension(restDims);
//int numOfClasses = tempRes.sizeAt(0); // number of classes
//std::vector<std::pair<NDArray*, int>> outputs(numOfClasses);
output->assign(0.);
int pos = 0;
auto func = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; i++) {
auto classNum = indices->e<Nd4jLong>(i);
auto current = listOfTensors.at(i);
auto currentOut = listOfOutTensors.at(i);
auto currentGradOut = listOfGradOuts.at(classNum);
for (Nd4jLong e = 0; e < current->lengthOf(); e++) {
if (sd::math::nd4j_abs(listOfBPTensors.at(classNum)->e<double>(e) - current->e<double>(e)) <
1.e-5)
currentOut->p(e, currentGradOut->e<double>(e));
}
}
};
samediff::Threads::parallel_tad(func, 0, indices->lengthOf());
}
return ND4J_STATUS_OK;
}
// segmen mean
int segmentMeanFunctorBP(sd::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output) {
int numClasses = output->sizeAt(0);
MAP_IMPL<Nd4jLong, Nd4jLong> classCount;//(numClasses);
for (Nd4jLong count = 0; count < numClasses; ++count) {
classCount[count] = 0;
}
for (Nd4jLong e = 0; e < indices->lengthOf(); ++e) {
classCount[indices->e<Nd4jLong>(e)] ++;
}
// if input is a vector: (as if in doc sample)
if (input->isVector()) {
for (Nd4jLong e = 0; e < indices->lengthOf(); ++e) {
Nd4jLong classNum = indices->e<Nd4jLong>(e);
output->p(e, gradOut->e<double>(classNum) / classCount[classNum]);
}
}
else {
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
ResultSet listOfGradOuts = gradOut->allTensorsAlongDimension(restDims);
ResultSet listOfTensors = input->allTensorsAlongDimension(restDims);
ResultSet listOfOutTensors = output->allTensorsAlongDimension(restDims);
;
int pos = 0;
//auto func = [&](uint64_t thread_id, uint64_t start, uint64_t stop, uint64_t increment) -> void {
for (Nd4jLong i = 0; i < indices->lengthOf(); i++) {
auto classNum = indices->e<Nd4jLong>(i);
auto current = listOfTensors.at(i);
auto currentOut = listOfOutTensors.at(i);
auto currentGradOut = listOfGradOuts.at(classNum);
for (Nd4jLong e = 0; e < current->lengthOf(); e++) {
currentOut->p(e, currentGradOut->e<double>(e) / classCount.at(classNum));
}
}
//};
//samediff::Threads::parallel_for(func, 0, indices->lengthOf());
}
return ND4J_STATUS_OK;
}
int segmentSumFunctorBP(sd::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output) {
// int numClasses = output->sizeAt(0);
// if input is a vector: (as if in doc sample)
Nd4jLong idx = indices->e<Nd4jLong>(0);
if (input->isVector()) {
for (Nd4jLong e = 0; e < indices->lengthOf(); ++e) {
Nd4jLong classNum = indices->e<Nd4jLong>(e);
output->p(e, gradOut->e<double>(classNum));
}
}
else {
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
ResultSet listOfGradOuts = gradOut->allTensorsAlongDimension(restDims);
ResultSet listOfTensors = input->allTensorsAlongDimension(restDims);
ResultSet listOfOutTensors = output->allTensorsAlongDimension(restDims);
//auto func = PRAGMA_THREADS_FOR {
for (Nd4jLong i = 0; i < indices->lengthOf(); i++) {
auto classNum = indices->e<Nd4jLong>(i);
auto current = listOfTensors.at(i);
auto currentOut = listOfOutTensors.at(i);
auto currentGradOut = listOfGradOuts.at(classNum);
currentOut->assign(currentGradOut);
}
//};
//samediff::Threads::parallel_for(func, 0, indices->lengthOf());
}
return Status::OK();
}
int segmentProdFunctorBP(sd::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output) {
auto tempRes = gradOut->dup();
segmentProdFunctor(context, input, indices, &tempRes);
if (input->isVector()) {
for (Nd4jLong e = 0; e < indices->lengthOf(); ++e) {
Nd4jLong classNum = indices->e<Nd4jLong>(e);
output->p(e, gradOut->e<double>(classNum) * tempRes.e<double>(classNum)/ input->e<double>(e));
}
}
else {
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
ResultSet listOfBPTensors = tempRes.allTensorsAlongDimension(restDims);
ResultSet listOfGradOuts = gradOut->allTensorsAlongDimension(restDims);
ResultSet listOfTensors = input->allTensorsAlongDimension(restDims);
ResultSet listOfOutTensors = output->allTensorsAlongDimension(restDims);
//int numOfClasses = tempRes.sizeAt(0); // number of classes
//std::vector<std::pair<NDArray*, int>> outputs(numOfClasses);
//auto func = PRAGMA_THREADS_FOR {
for (Nd4jLong i = 0; i < indices->lengthOf(); i++) {
auto classNum = indices->e<Nd4jLong>(i);
auto current = listOfTensors.at(i);
auto currentOut = listOfOutTensors.at(i);
auto currentGradOut = listOfGradOuts.at(classNum);
auto currentFFOut = listOfBPTensors.at(classNum);
currentOut->assign((*currentFFOut) * (*currentGradOut) / (*current));
}
//};
//samediff::Threads::parallel_for(func, 0, indices->lengthOf());
}
return ND4J_STATUS_OK;
}
// -------------------------------------------------------------------------------------------------------------- //
// Unsorted backpropagate segment ops
// -------------------------------------------------------------------------------------------------------------- //
template <typename T>
static int unsortedSegmentMaxFunctorBP_(sd::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
// int numOfClasses = gradOut->sizeAt(0);
// if input is a vector: (as if in doc sample)
auto tempRes = gradOut->dup();
unsortedSegmentMaxFunctor(context, input, indices, numOfClasses, &tempRes);
if (input->isVector()) {
for (Nd4jLong e = 0; e < input->lengthOf(); ++e) {
Nd4jLong classNum = indices->e<Nd4jLong>(e);
if (sd::math::nd4j_abs(tempRes.e<double>(classNum) - input->e<double>(e)) < 1.e-5)
output->p(e, gradOut->e<T>(classNum));
}
}
else {
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
ResultSet listOfBPTensors = tempRes.allTensorsAlongDimension(restDims);
ResultSet listOfGradOuts = gradOut->allTensorsAlongDimension(restDims);
ResultSet listOfTensors = input->allTensorsAlongDimension(restDims);
ResultSet listOfOutTensors = output->allTensorsAlongDimension(restDims);
for (Nd4jLong i = 0; i < indices->lengthOf(); i++) {
Nd4jLong classNum = indices->e<Nd4jLong>(i);
NDArray* current = listOfTensors.at(i);
NDArray* currentOut = listOfOutTensors.at(i);
NDArray* currentGradOut = listOfGradOuts.at(classNum);
for (int e = 0; e < current->lengthOf(); e++) {
if (sd::math::nd4j_abs(listOfBPTensors.at(classNum)->e<double>(e) - current->e<double>(e)) < 1.e-5)
currentOut->p(e, currentGradOut->e<T>(e));
}
}
}
return ND4J_STATUS_OK;
}
int unsortedSegmentMaxFunctorBP(sd::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
BUILD_SINGLE_SELECTOR(output->dataType(), return unsortedSegmentMaxFunctorBP_, (context, input, indices, gradOut, numOfClasses, output), NUMERIC_TYPES);
}
BUILD_SINGLE_TEMPLATE(template int unsortedSegmentMaxFunctorBP_, (sd::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output), NUMERIC_TYPES);
template <typename T>
static int unsortedSegmentMinFunctorBP_(sd::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
auto tempRes = gradOut->dup();
unsortedSegmentMinFunctor(context, input, indices, numOfClasses, &tempRes);
if (input->isVector()) {
auto func = PRAGMA_THREADS_FOR {
for (auto e = start; e < stop; e++) {
auto classNum = indices->e<Nd4jLong>(e);
if (sd::math::nd4j_abs(tempRes.t<T>(classNum) - input->t<T>(e)) < 1.e-6)
output->r<T>(e) = gradOut->t<T>(classNum);
}
};
samediff::Threads::parallel_for(func, 0, input->lengthOf());
}
else {
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
ResultSet listOfBPTensors = tempRes.allTensorsAlongDimension(restDims);
ResultSet listOfGradOuts = gradOut->allTensorsAlongDimension(restDims);
ResultSet listOfTensors = input->allTensorsAlongDimension(restDims);
ResultSet listOfOutTensors = output->allTensorsAlongDimension(restDims);
//auto func = PRAGMA_THREADS_FOR {
for (Nd4jLong i = 0; i < indices->lengthOf(); i++) {
auto classNum = indices->e<Nd4jLong>(i);
auto current = listOfTensors.at(i);
auto currentOut = listOfOutTensors.at(i);
auto currentGradOut = listOfGradOuts.at(classNum);
for (Nd4jLong e = 0; e < current->lengthOf(); e++) {
if (sd::math::nd4j_abs(listOfBPTensors.at(classNum)->t<T>(e) - current->t<T>(e)) < 1.e-6)
currentOut->r<T>(e) = currentGradOut->t<T>(e);
}
}
//};
//samediff::Threads::parallel_for(func, 0, indices->lengthOf());
}
return ND4J_STATUS_OK;
}
int unsortedSegmentMinFunctorBP(sd::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
BUILD_SINGLE_SELECTOR(output->dataType(), return unsortedSegmentMinFunctorBP_, (context, input, indices, gradOut, numOfClasses, output), NUMERIC_TYPES);
}
BUILD_SINGLE_TEMPLATE(template int unsortedSegmentMinFunctorBP_, (sd::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output), NUMERIC_TYPES);
int unsortedSegmentMeanFunctorBP(sd::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
MAP_IMPL<Nd4jLong, Nd4jLong> classCount;//(numClasses);
for (Nd4jLong count = 0; count < numOfClasses; ++count) {
classCount[count] = 0;
}
for (Nd4jLong e = 0; e < indices->lengthOf(); ++e) {
classCount[indices->e<Nd4jLong>(e)]++;
}
// if input is a vector: (as if in doc sample)
if (input->isVector()) {
for (Nd4jLong e = 0; e < indices->lengthOf(); ++e) {
Nd4jLong classNum = indices->e<Nd4jLong>(e);
output->p(e, gradOut->e<double>(classNum) / classCount[classNum]);
}
}
else {
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
ResultSet listOfGradOuts = gradOut->allTensorsAlongDimension(restDims);
ResultSet listOfTensors = input->allTensorsAlongDimension(restDims);
ResultSet listOfOutTensors = output->allTensorsAlongDimension(restDims);
for (Nd4jLong i = 0; i < indices->lengthOf(); i++) {
Nd4jLong classNum = indices->e<Nd4jLong>(i);
NDArray* current = listOfTensors.at(i);
NDArray* currentOut = listOfOutTensors.at(i);
NDArray* currentGradOut = listOfGradOuts.at(classNum);
currentOut->assign(*currentGradOut / double(classCount[classNum]));
}
}
return ND4J_STATUS_OK;
}
int unsortedSegmentSumFunctorBP(sd::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
// if input is a vector: (as if in doc sample)
Nd4jLong idx = indices->e<Nd4jLong>(0);
if (input->isVector()) {
for (Nd4jLong e = 0; e < indices->lengthOf(); ++e) {
Nd4jLong classNum = indices->e<Nd4jLong>(e);
output->p(e, gradOut->e<double>(classNum));
}
}
else {
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
ResultSet listOfGradOuts = gradOut->allTensorsAlongDimension(restDims);
ResultSet listOfTensors = input->allTensorsAlongDimension(restDims);
ResultSet listOfOutTensors = output->allTensorsAlongDimension(restDims);
//auto func = PRAGMA_THREADS_FOR {
for (Nd4jLong i = 0; i < indices->lengthOf(); i++) {
auto classNum = indices->e<Nd4jLong>(i);
auto currentOut = listOfOutTensors.at(i);
auto currentGradOut = listOfGradOuts.at(classNum);
currentOut->assign(currentGradOut);
}
//};
//samediff::Threads::parallel_for(func, 0, indices->lengthOf());
}
return Status::OK();
}
int unsortedSegmentProdFunctorBP(sd::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
auto tempRes = gradOut->dup();
unsortedSegmentProdFunctor(context, input, indices, numOfClasses, &tempRes);
if (input->isVector()) {
auto func = PRAGMA_THREADS_FOR {
for (auto e = start; e < stop; e++) {
auto classNum = indices->e<Nd4jLong>(e);
output->p<double>(e, gradOut->e<double>(classNum) * tempRes.e<double>(classNum) / input->e<double>(e));
}
};
samediff::Threads::parallel_for(func, 0, indices->lengthOf());
}
else {
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
ResultSet listOfBPTensors = tempRes.allTensorsAlongDimension(restDims);
ResultSet listOfGradOuts = gradOut->allTensorsAlongDimension(restDims);
ResultSet listOfTensors = input->allTensorsAlongDimension(restDims);
ResultSet listOfOutTensors = output->allTensorsAlongDimension(restDims);
//auto func = PRAGMA_THREADS_FOR {
for (Nd4jLong i = 0; i < indices->lengthOf(); i++) {
auto classNum = indices->e<Nd4jLong>(i);
auto current = listOfTensors.at(i);
auto currentOut = listOfOutTensors.at(i);
auto currentGradOut = listOfGradOuts.at(classNum);
auto currentFFOut = listOfBPTensors.at(classNum);
currentOut->assign((*currentFFOut) * (*currentGradOut) / (*current));
}
//};
//samediff::Threads::parallel_for(func, 0, indices->lengthOf());
}
return Status::OK();
}
// template <typename T>
int unsortedSegmentSqrtNFunctorBP(sd::LaunchContext * context, NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
MAP_IMPL<Nd4jLong, Nd4jLong> classCount;//(numClasses);
for (Nd4jLong count = 0; count < numOfClasses; ++count) {
classCount[count] = 0;
}
for (Nd4jLong e = 0; e < indices->lengthOf(); ++e) {
classCount[indices->e<Nd4jLong>(e)]++;
}
// if input is a vector: (as if in doc sample)
if (input->isVector()) {
//auto func = PRAGMA_THREADS_FOR {
for (Nd4jLong e = 0; e < indices->lengthOf(); e++) {
auto classNum = indices->e<Nd4jLong>(e);
output->p(e, gradOut->e<double>(classNum) / sd::math::nd4j_sqrt<double, double>(classCount[classNum]));
}
//};
//samediff::Threads::parallel_for(func, 0, indices->lengthOf());
}
else {
auto restDims = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
ResultSet listOfGradOuts =gradOut->allTensorsAlongDimension(restDims);
ResultSet listOfTensors =input->allTensorsAlongDimension(restDims);
ResultSet listOfOutTensors =output->allTensorsAlongDimension(restDims);
//auto func = PRAGMA_THREADS_FOR {
for (Nd4jLong i = 0; i < indices->lengthOf(); i++) {
auto classNum = indices->e<Nd4jLong>(i);
auto current = listOfTensors.at(i);
auto currentOut = listOfOutTensors.at(i);
auto currentGradOut = listOfGradOuts.at(classNum);
for (int e = 0; e < current->lengthOf(); e++) {
currentOut->p<double>(e, currentGradOut->e<double>(e) / sd::math::nd4j_sqrt<double, double>(classCount[classNum]));
}
}
//};
//samediff::Threads::parallel_for(func, 0, indices->lengthOf());
}
return Status::OK();
}
}
}
}