cavis/libnd4j/include/ops/declarable/platform/mkldnn/batchnorm.cpp

707 lines
31 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author saudet
// @author raver119@gmail.com
// @author Yurii Shyrma (iuriish@yahoo.com)
//
#include <ops/declarable/PlatformHelper.h>
#include <ops/declarable/OpRegistrator.h>
#include <platform_boilerplate.h>
#include <helpers/MKLDNNStream.h>
#include "mkldnnUtils.h"
#include <ops/declarable/helpers/convolutions.h>
#include <NDArrayFactory.h>
namespace nd4j {
namespace ops {
namespace platforms {
//////////////////////////////////////////////////////////////////////////
static void batchnormMKLDNN(const NDArray* x, const NDArray* mean, const NDArray* variance, const NDArray* weights, const float epsilon, NDArray* z) {
// unfortunately mkl dnn doesn't support any format (mkldnn::memory::format_tag::any)
// also it gives wrong results for formats nhwc and ndhwc
// x -> 2D:nc, 4D:nchw, 5D:ncdhw
// mean -> 1D [c]
// variance -> 1D [c]
// weights 2D [2, c], weights({0,1, 0,0}) contains gamma and weights({1,2, 0,0}) contains beta
// z(output) - same shape as x
const int xRank = x->rankOf();
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
// input type
mkldnn::memory::data_type type = mkldnn::memory::data_type::f32;
// indicate whether gamma or/and beta are given
auto flags = mkldnn::normalization_flags::use_global_stats;
if (weights != nullptr)
flags |= mkldnn::normalization_flags::use_scale_shift;
mkldnn::memory::dims dims;
mkldnn::memory::format_tag format;
if(xRank == 2) {
dims = {x->sizeAt(0), x->sizeAt(1)};
format = mkldnn::memory::format_tag::nc;
}
else if(xRank == 4) {
dims = {x->sizeAt(0), x->sizeAt(1), x->sizeAt(2), x->sizeAt(3)};
format = mkldnn::memory::format_tag::nchw;
}
else { // xRank = 5
dims = {x->sizeAt(0), x->sizeAt(1), x->sizeAt(2), x->sizeAt(3), x->sizeAt(4)};
format = mkldnn::memory::format_tag::ncdhw;
}
// memory descriptors for arrays
// x
mkldnn::memory::desc x_mkl_md = mkldnn::memory::desc(dims, type, format);
mkldnn::memory::desc x_user_md = mkldnn::memory::desc(dims, type, format);
x_user_md.data.format_kind = mkldnn_blocked; // overrides format
x_user_md.data.format_desc.blocking.strides[0] = x->stridesOf()[0];
x_user_md.data.format_desc.blocking.strides[1] = x->stridesOf()[1];
if(xRank > 2) {
x_user_md.data.format_desc.blocking.strides[2] = x->stridesOf()[2];
x_user_md.data.format_desc.blocking.strides[3] = x->stridesOf()[3];
}
if(xRank > 4)
x_user_md.data.format_desc.blocking.strides[4] = x->stridesOf()[4];
// z, output
mkldnn::memory::desc z_mkl_md = mkldnn::memory::desc(dims, type, format);
mkldnn::memory::desc z_user_md = mkldnn::memory::desc(dims, type, format);
z_user_md.data.format_kind = mkldnn_blocked; // overrides format
z_user_md.data.format_desc.blocking.strides[0] = z->stridesOf()[0];
z_user_md.data.format_desc.blocking.strides[1] = z->stridesOf()[1];
if(xRank > 2) {
z_user_md.data.format_desc.blocking.strides[2] = z->stridesOf()[2];
z_user_md.data.format_desc.blocking.strides[3] = z->stridesOf()[3];
}
if(xRank > 4)
z_user_md.data.format_desc.blocking.strides[4] = z->stridesOf()[4];
// batchnorm forward description
mkldnn::batch_normalization_forward::desc op_ff_desc(mkldnn::prop_kind::forward_inference, x_mkl_md, epsilon, flags);
mkldnn::batch_normalization_forward::primitive_desc op_ff_prim_desc(op_ff_desc, engine);
// arguments (memory buffers) necessary for calculations
std::unordered_map<int, mkldnn::memory> args;
mkldnn::stream stream(engine);
// provide memory and check whether reorder is required
// x
auto x_user_mem = mkldnn::memory(x_user_md, engine, x->getBuffer());
const bool xReorder = op_ff_prim_desc.src_desc() != x_user_mem.get_desc();
auto x_mkl_mem = xReorder ? mkldnn::memory(op_ff_prim_desc.src_desc(), engine) : x_user_mem;
if (xReorder)
mkldnn::reorder(x_user_mem, x_mkl_mem).execute(stream, x_user_mem, x_mkl_mem);
args[MKLDNN_ARG_SRC] = x_mkl_mem;
// z
auto z_user_mem = mkldnn::memory(z_user_md, engine, z->getBuffer());
const bool zReorder = op_ff_prim_desc.dst_desc() != z_user_mem.get_desc();
auto z_mkl_mem = zReorder ? mkldnn::memory(op_ff_prim_desc.dst_desc(), engine) : z_user_mem;
if (zReorder)
mkldnn::reorder(z_user_mem, z_mkl_mem).execute(stream, z_user_mem, z_mkl_mem);
args[MKLDNN_ARG_DST] = z_mkl_mem;
// mean
auto mean_mkl_mem = mkldnn::memory(op_ff_prim_desc.mean_desc(), engine, mean->getBuffer());
args[MKLDNN_ARG_MEAN] = mean_mkl_mem;
// variance
auto var_mkl_mem = mkldnn::memory(op_ff_prim_desc.variance_desc(), engine, variance->getBuffer());
args[MKLDNN_ARG_VARIANCE] = var_mkl_mem;
// gamma and beta (and their gradients) if they are present
if(weights != nullptr) {
auto w_mkl_mem = mkldnn::memory(op_ff_prim_desc.weights_desc(), engine, weights->getBuffer());
args[MKLDNN_ARG_WEIGHTS] = w_mkl_mem;
}
// run calculations
mkldnn::batch_normalization_forward(op_ff_prim_desc).execute(stream, args);
// reorder outputs if necessary
if (zReorder)
mkldnn::reorder(z_mkl_mem, z_user_mem).execute(stream, z_mkl_mem, z_user_mem);
stream.wait();
// shape::printArray(z_mkl_mem.map_data<float>(),8);
}
//////////////////////////////////////////////////////////////////////////
static void batchnormBackPropMKLDNN(const NDArray* x, const NDArray* mean, const NDArray* variance, const NDArray* dLdO, const NDArray* weights,
const float epsilon, NDArray* dLdI, NDArray* dLdW) {
// unfortunately mkl dnn doesn't support any format (mkldnn::memory::format_tag::any)
// also it gives wrong results for formats nhwc and ndhwc
// x -> 2D:nc, 4D:nchw, 5D:ncdhw
// mean -> 1D [c]
// variance -> 1D [c]
// dLdO - same shape as x
// weights 2D [2, c], weights({0,1, 0,0}) contains gamma and weights({1,2, 0,0}) contains beta
// dLdI - same shape as x
// dLdW - same shape as weights, dLdW({0,1, 0,0}) contains grad_gamma and dLdW({1,2, 0,0}) contains grad_beta
const int xRank = x->rankOf();
auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
// input type
mkldnn::memory::data_type type = mkldnn::memory::data_type::f32;
// indicate whether gamma or/and beta are given
auto flags = mkldnn::normalization_flags::use_global_stats;
if (weights != nullptr)
flags |= mkldnn::normalization_flags::use_scale_shift;
mkldnn::memory::dims dims;
mkldnn::memory::format_tag format;
if(xRank == 2) {
dims = {x->sizeAt(0), x->sizeAt(1)};
format = mkldnn::memory::format_tag::nc;
}
else if(xRank == 4) {
dims = {x->sizeAt(0), x->sizeAt(1), x->sizeAt(2), x->sizeAt(3)};
format = mkldnn::memory::format_tag::nchw;
}
else { // xRank = 5
dims = {x->sizeAt(0), x->sizeAt(1), x->sizeAt(2), x->sizeAt(3), x->sizeAt(4)};
format = mkldnn::memory::format_tag::ncdhw;
}
// memory descriptors for arrays
// x
mkldnn::memory::desc x_mkl_md = mkldnn::memory::desc(dims, type, format);
mkldnn::memory::desc x_user_md = mkldnn::memory::desc(dims, type, format);
x_user_md.data.format_kind = mkldnn_blocked; // overrides format
x_user_md.data.format_desc.blocking.strides[0] = x->stridesOf()[0];
x_user_md.data.format_desc.blocking.strides[1] = x->stridesOf()[1];
if(xRank > 2) {
x_user_md.data.format_desc.blocking.strides[2] = x->stridesOf()[2];
x_user_md.data.format_desc.blocking.strides[3] = x->stridesOf()[3];
}
if(xRank > 4)
x_user_md.data.format_desc.blocking.strides[4] = x->stridesOf()[4];
// dLdO
mkldnn::memory::desc dLdO_mkl_md = mkldnn::memory::desc(dims, type, format);
mkldnn::memory::desc dLdO_user_md = mkldnn::memory::desc(dims, type, format);
dLdO_user_md.data.format_kind = mkldnn_blocked; // overrides format
dLdO_user_md.data.format_desc.blocking.strides[0] = dLdO->stridesOf()[0];
dLdO_user_md.data.format_desc.blocking.strides[1] = dLdO->stridesOf()[1];
if(xRank > 2) {
dLdO_user_md.data.format_desc.blocking.strides[2] = dLdO->stridesOf()[2];
dLdO_user_md.data.format_desc.blocking.strides[3] = dLdO->stridesOf()[3];
}
if(xRank > 4)
dLdO_user_md.data.format_desc.blocking.strides[4] = dLdO->stridesOf()[4];
// dLdI
mkldnn::memory::desc dLdI_mkl_md = mkldnn::memory::desc(dims, type, format);
mkldnn::memory::desc dLdI_user_md = mkldnn::memory::desc(dims, type, format);
dLdI_user_md.data.format_kind = mkldnn_blocked; // overrides format
dLdI_user_md.data.format_desc.blocking.strides[0] = dLdI->stridesOf()[0];
dLdI_user_md.data.format_desc.blocking.strides[1] = dLdI->stridesOf()[1];
if(xRank > 2) {
dLdI_user_md.data.format_desc.blocking.strides[2] = dLdI->stridesOf()[2];
dLdI_user_md.data.format_desc.blocking.strides[3] = dLdI->stridesOf()[3];
}
if(xRank > 4)
dLdI_user_md.data.format_desc.blocking.strides[4] = dLdI->stridesOf()[4];
// batchnorm forward description
mkldnn::batch_normalization_forward::desc op_ff_desc(mkldnn::prop_kind::forward_inference, x_mkl_md, epsilon, flags);
mkldnn::batch_normalization_forward::primitive_desc op_ff_prim_desc(op_ff_desc, engine);
// batchnorm backprop description
mkldnn::batch_normalization_backward::desc op_bp_desc(mkldnn::prop_kind::backward, dLdO_mkl_md, x_mkl_md, epsilon, flags);
mkldnn::batch_normalization_backward::primitive_desc op_bp_prim_desc(op_bp_desc, engine, op_ff_prim_desc);
// arguments (memory buffers) necessary for calculations
std::unordered_map<int, mkldnn::memory> args;
mkldnn::stream stream(engine);
// provide memory and check whether reorder is required
// x
auto x_user_mem = mkldnn::memory(x_user_md, engine, x->getBuffer());
const bool xReorder = op_bp_prim_desc.src_desc() != x_user_mem.get_desc();
auto x_mkl_mem = xReorder ? mkldnn::memory(op_bp_prim_desc.src_desc(), engine) : x_user_mem;
if (xReorder)
mkldnn::reorder(x_user_mem, x_mkl_mem).execute(stream, x_user_mem, x_mkl_mem);
args[MKLDNN_ARG_SRC] = x_mkl_mem;
// dLdO
auto dLdO_user_mem = mkldnn::memory(dLdO_user_md, engine, dLdO->getBuffer());
const bool dLdOReorder = op_bp_prim_desc.diff_dst_desc() != dLdO_user_mem.get_desc();
auto dLdO_mkl_mem = dLdOReorder ? mkldnn::memory(op_bp_prim_desc.diff_dst_desc(), engine) : dLdO_user_mem;
if (dLdOReorder)
mkldnn::reorder(dLdO_user_mem, dLdO_mkl_mem).execute(stream, dLdO_user_mem, dLdO_mkl_mem);
args[MKLDNN_ARG_DIFF_DST] = dLdO_mkl_mem;
// mean
auto mean_mkl_mem = mkldnn::memory(op_bp_prim_desc.mean_desc(), engine, mean->getBuffer());
args[MKLDNN_ARG_MEAN] = mean_mkl_mem;
// variance
auto var_mkl_mem = mkldnn::memory(op_bp_prim_desc.variance_desc(), engine, variance->getBuffer());
args[MKLDNN_ARG_VARIANCE] = var_mkl_mem;
// dLdI
auto dLdI_user_mem = mkldnn::memory(dLdI_user_md, engine, dLdI->getBuffer());
const bool dLdIReorder = op_bp_prim_desc.diff_src_desc() != dLdI_user_mem.get_desc();
auto dLdI_mkl_mem = dLdIReorder ? mkldnn::memory(op_bp_prim_desc.diff_src_desc(), engine) : dLdI_user_mem;
args[MKLDNN_ARG_DIFF_SRC] = dLdI_mkl_mem;
// gamma and beta (and their gradients) if they are present
if(weights != nullptr) {
auto w_mkl_mem = mkldnn::memory(op_bp_prim_desc.weights_desc(), engine, weights->getBuffer());
args[MKLDNN_ARG_WEIGHTS] = w_mkl_mem;
auto dLdW_mkl_mem = mkldnn::memory(op_bp_prim_desc.weights_desc(), engine, dLdW->getBuffer());
args[MKLDNN_ARG_DIFF_WEIGHTS] = dLdW_mkl_mem;
}
// run calculations
mkldnn::batch_normalization_backward(op_bp_prim_desc).execute(stream, args);
// reorder outputs if necessary
if (dLdIReorder)
mkldnn::reorder(dLdI_mkl_mem, dLdI_user_mem).execute(stream, dLdI_mkl_mem, dLdI_user_mem);
stream.wait();
// shape::printArray(dLdI_mkl_mem.map_data<float>(),8);
}
PLATFORM_IMPL(batchnorm) {
auto input = INPUT_VARIABLE(0); // 2D:nc, 4D:nchw, 5D:ncdhw
auto mean = INPUT_VARIABLE(1); // [c]
auto variance = INPUT_VARIABLE(2); // [c]
NDArray* gamma = nullptr; // [c]
NDArray* beta = nullptr; // [c]
auto output = OUTPUT_VARIABLE(0); // same shape as input
const bool applyScale = (bool)INT_ARG(0);
const bool applyOffset = (bool)INT_ARG(1);
const double epsilon = T_ARG(0);
if(applyScale)
gamma = INPUT_VARIABLE(3);
if(applyOffset)
beta = INPUT_VARIABLE(3 + (int)applyScale);
const int numOfIntArgs = block.getIArguments()->size();
const int inRank = input->rankOf();
// get axes args to normalize input array over
std::vector<int> axes;
if(numOfIntArgs > 2)
for(int i = 2; i < numOfIntArgs; ++i)
axes.push_back(INT_ARG(i));
else
axes.push_back(inRank-1); // default dimension to reduce along is last dimension
const int numOfAxes = axes.size();
REQUIRE_TRUE(numOfAxes == 1, 0, "BATCHNORM_MKLDNN op: mkl dnn library supports only one axis which represents channel dimension, but got %i axes instead!", numOfAxes);
REQUIRE_TRUE(inRank == 2 || inRank == 4 || inRank == 5, 0, "BATCHNORM_MKLDNN op: possible values for rank of input array are 2, 4 or 5, but got %i instead!", inRank);
REQUIRE_TRUE(mean->rankOf() == 1 && mean->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_MKLDNN op: wrong shape of mean array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(mean).c_str());
REQUIRE_TRUE(variance->rankOf() == 1 && variance->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_MKLDNN op: wrong shape of variance array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(variance).c_str());
if(gamma != nullptr)
REQUIRE_TRUE(gamma->rankOf() == 1 && gamma->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_MKLDNN op: wrong shape of gamma array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(gamma).c_str());
if(beta != nullptr)
REQUIRE_TRUE(beta->rankOf() == 1 && beta->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_MKLDNN op: wrong shape of beta array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(beta).c_str());
// types of all input arrays should be the same (except dLdO)
for(int i = 1; i < block.width() - 1; ++i)
REQUIRE_TRUE(INPUT_VARIABLE(0)->dataType() == INPUT_VARIABLE(i)->dataType(), 0, "BATCHNORM_MKLDNN op: types of all input arrays should be the same !");
NDArray *weights = nullptr;
if(applyScale || applyOffset) {
weights = new NDArray(input->ordering(), {2, input->sizeAt(axes[0])}, input->dataType());
if(applyScale)
(*weights)({0,1, 0,0}).assign(gamma);
else
(*weights)({0,1, 0,0}).assign(1);
if(applyOffset)
(*weights)({1,2, 0,0}).assign(beta);
else
(*weights)({1,2, 0,0}).assign(0);
}
batchnormMKLDNN(input, mean, variance, weights, epsilon, output);
delete weights;
return Status::OK();
}
//////////////////////////////////////////////////////////////////////////
PLATFORM_CHECK(batchnorm) {
// we don't want to use mkldnn if cpu doesn't support avx/avx2
// if (::optimalLevel() < 2)
// return false;
auto input = INPUT_VARIABLE(0); // 2D:nc, 4D:nchw, 5D:ncdhw
auto mean = INPUT_VARIABLE(1); // [c]
auto variance = INPUT_VARIABLE(2); // [c]
NDArray* gamma = nullptr; // [c]
NDArray* beta = nullptr; // [c]
auto output = OUTPUT_VARIABLE(0); // same shape as input
const bool applyScale = (bool)INT_ARG(0);
const bool applyOffset = (bool)INT_ARG(1);
if(applyScale)
gamma = INPUT_VARIABLE(3);
if(applyOffset)
beta = INPUT_VARIABLE(3 + (int)applyScale);
const int numOfIntArgs = block.getIArguments()->size();
std::vector<int> axes;
if(numOfIntArgs > 2)
for(int i = 2; i < numOfIntArgs; ++i)
axes.push_back(INT_ARG(i));
else
axes.push_back(input->rankOf()-1); // default dimension to reduce along is last dimension
DataType inputType = input->dataType();
DataType meanType = mean->dataType();
DataType varType = variance->dataType();
DataType gammaType = gamma != nullptr ? gamma->dataType() : DataType::FLOAT32;
DataType betaType = beta != nullptr ? beta->dataType() : DataType::FLOAT32;
DataType outType = output->dataType();
const int inRank = input->rankOf();
return block.isUseMKLDNN() && axes.size() == 1 && axes[0] == 1 && (inRank == 2 || inRank == 4 || inRank == 5) &&
(inputType == DataType::FLOAT32 && meanType == DataType::FLOAT32 && varType == DataType::FLOAT32 &&
gammaType == DataType::FLOAT32 && betaType == DataType::FLOAT32 && outType == DataType::FLOAT32);
}
//////////////////////////////////////////////////////////////////////////
// PLATFORM_IMPL(batchnorm) {
// auto input = INPUT_VARIABLE(0);
// auto mean = INPUT_VARIABLE(1);
// auto variance = INPUT_VARIABLE(2);
// NDArray *gamma = nullptr;
// NDArray *beta = nullptr;
// auto output = OUTPUT_VARIABLE(0);
// const bool applyScale = (bool) INT_ARG(0);
// const bool applyOffset = (bool) INT_ARG(1);
// const double epsilon = T_ARG(0);
// if (applyScale)
// gamma = INPUT_VARIABLE(3);
// if (applyOffset)
// beta = INPUT_VARIABLE(3 + static_cast<int>(applyScale));
// std::vector<int> axes;
// if (block.numI() > 2)
// for (int i = 2; i < block.numI(); ++i)
// axes.push_back(INT_ARG(i));
// else
// axes.push_back(input->rankOf() - 1);
// std::vector<Nd4jLong> shape({2, mean->lengthOf()});
// NDArray weights = NDArrayFactory::create<float>('c', shape, block.launchContext());
// weights({0, 1, 0, 0}).assign(1.0f);
// weights({1, 2, 0, 0}).assign(0.0f);
// mkldnn_memory_desc_t empty;
// mkldnn::memory::desc batchnorm_src_md(empty), batchnorm_dst_md(empty), user_src_md(empty), user_dst_md(empty);
// auto flag = mkldnn::normalization_flags::use_global_stats;
// if (applyScale || applyOffset)
// flag |= mkldnn::normalization_flags::use_scale_shift;
// mkldnnUtils::getMKLDNNMemoryDescBatchNorm(input, nullptr, output,
// &batchnorm_src_md, nullptr, &batchnorm_dst_md,
// &user_src_md, nullptr, &user_dst_md, axes[0]);
// auto batchnorm_desc = mkldnn::batch_normalization_forward::desc(mkldnn::prop_kind::forward_inference, batchnorm_src_md, epsilon, flag);
// auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine());
// mkldnn::stream stream(engine);
// auto batchnorm_prim_desc = mkldnn::batch_normalization_forward::primitive_desc(batchnorm_desc, engine);
// auto user_src_memory = mkldnn::memory(user_src_md, engine, input->buffer());
// auto user_dst_memory = mkldnn::memory(user_dst_md, engine, output->buffer());
// auto batchnorm_mean_memory = mkldnn::memory(batchnorm_prim_desc.mean_desc(), engine,
// mean->buffer());
// auto batchnorm_variance_memory = mkldnn::memory(batchnorm_prim_desc.variance_desc(), engine,
// variance->buffer());
// auto batchnorm_src_memory = user_src_memory;
// mkldnn::memory m(batchnorm_src_md, engine);
// if (m.get_desc() != user_src_memory.get_desc()) {
// batchnorm_src_memory = mkldnn::memory(batchnorm_src_md, engine);
// mkldnn::reorder(user_src_memory, batchnorm_src_memory).execute(stream, user_src_memory,
// batchnorm_src_memory);
// }
// auto batchnorm_dst_memory = user_dst_memory;
// if (batchnorm_prim_desc.dst_desc() != user_dst_memory.get_desc()) {
// batchnorm_dst_memory = mkldnn::memory(batchnorm_prim_desc.dst_desc(), engine);
// }
// if (applyScale || applyOffset) {
// if (gamma != nullptr) {
// weights({0, 1, 0, 0}).assign(gamma);
// }
// if (beta != nullptr) {
// weights({1, 2, 0, 0}).assign(beta);
// }
// auto batchnorm_weights_memory = mkldnn::memory(batchnorm_prim_desc.weights_desc(), engine, weights.buffer());
// mkldnn::batch_normalization_forward(batchnorm_prim_desc).execute(stream,
// {{MKLDNN_ARG_SRC, batchnorm_src_memory},
// {MKLDNN_ARG_MEAN, batchnorm_mean_memory},
// {MKLDNN_ARG_VARIANCE, batchnorm_variance_memory},
// {MKLDNN_ARG_WEIGHTS, batchnorm_weights_memory},
// {MKLDNN_ARG_DST, batchnorm_dst_memory}});
// } else {
// mkldnn::batch_normalization_forward(batchnorm_prim_desc).execute(stream,
// {{MKLDNN_ARG_SRC, batchnorm_src_memory},
// {MKLDNN_ARG_MEAN, batchnorm_mean_memory},
// {MKLDNN_ARG_VARIANCE, batchnorm_variance_memory},
// {MKLDNN_ARG_DST, batchnorm_dst_memory}});
// }
// if (batchnorm_prim_desc.dst_desc() != user_dst_memory.get_desc()) {
// mkldnn::reorder(batchnorm_dst_memory, user_dst_memory).execute(stream, batchnorm_dst_memory,
// user_dst_memory);
// }
// stream.wait();
// return Status::OK();
// }
//////////////////////////////////////////////////////////////////////////
// PLATFORM_CHECK(batchnorm) {
// // we don't want to use mkldnn if cpu doesn't support avx/avx2
// if (::optimalLevel() < 2)
// return false;
// auto input = INPUT_VARIABLE(0);
// auto mean = INPUT_VARIABLE(1);
// auto variance = INPUT_VARIABLE(2);
// NDArray *gamma = nullptr;
// NDArray *beta = nullptr;
// auto output = OUTPUT_VARIABLE(0);
// const bool applyScale = (bool) INT_ARG(0);
// const bool applyOffset = (bool) INT_ARG(1);
// const double epsilon = T_ARG(0);
// if (applyScale)
// gamma = INPUT_VARIABLE(3);
// if (applyOffset)
// beta = INPUT_VARIABLE(3 + static_cast<int>(applyScale));
// std::vector<int> axes;
// if (block.numI() > 2)
// for (int i = 2; i < block.numI(); ++i)
// axes.push_back(INT_ARG(i));
// else
// axes.push_back(input->rankOf() - 1);
// return block.isUseMKLDNN() &&
// nd4j::MKLDNNStream::isSupported({input, mean, variance, gamma, beta, output}) &&
// axes.size() == 1;
// }
//////////////////////////////////////////////////////////////////////////
PLATFORM_IMPL(batchnorm_bp) {
NDArray* input = INPUT_VARIABLE(0); // 2D:nc, 4D:nchw, 5D:ncdhw
NDArray* mean = INPUT_VARIABLE(1); // [c]
NDArray* variance = INPUT_VARIABLE(2); // [c]
NDArray* dLdO = INPUT_VARIABLE(3); // same as input
NDArray* gamma = nullptr; // [c]
NDArray* beta = nullptr; // [c]
NDArray* dLdI = OUTPUT_VARIABLE(0); // same as input
NDArray* dLdM = OUTPUT_VARIABLE(1); // [c]
NDArray* dLdV = OUTPUT_VARIABLE(2); // [c]
NDArray* dLdG = nullptr; // [c]
NDArray* dLdB = nullptr; // [c]
const bool applyScale = (bool)INT_ARG(0);
const bool applyOffset = (bool)INT_ARG(1);
const float epsilon = T_ARG(0);
if(applyScale) {
gamma = INPUT_VARIABLE(4);
dLdG = OUTPUT_VARIABLE(3);
}
if(applyOffset) {
beta = INPUT_VARIABLE(4 + (int)applyScale);
dLdB = OUTPUT_VARIABLE(3 + (int)applyScale);
}
const int numOfIntArgs = block.getIArguments()->size();
const int inRank = input->rankOf();
// get axes args to normalize input array over
std::vector<int> axes;
if(numOfIntArgs > 2)
for(int i = 2; i < numOfIntArgs; ++i)
axes.push_back(INT_ARG(i));
else
axes.push_back(inRank-1); // default dimension to reduce along is last dimension
const int numOfAxes = axes.size();
REQUIRE_TRUE(numOfAxes == 1, 0, "BATCHNORM_BP_MKLDNN op: mkl dnn library supports only one axis which represents channel dimension, but got %i axes instead!", numOfAxes);
REQUIRE_TRUE(inRank == 2 || inRank == 4 || inRank == 5, 0, "BATCHNORM_BP_MKLDNN op: possible values for rank of input array are 2, 4 or 5, but got %i instead!", inRank);
REQUIRE_TRUE(input->isSameShape(dLdO), 0, "BATCHNORM_BP_MKLDNN op: wrong shape of gradients array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(input).c_str(), ShapeUtils::shapeAsString(dLdO).c_str());
REQUIRE_TRUE(mean->rankOf() == 1 && mean->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_BP_MKLDNN op: wrong shape of mean array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(mean).c_str());
REQUIRE_TRUE(variance->rankOf() == 1 && variance->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_BP_MKLDNN op: wrong shape of variance array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(variance).c_str());
if(gamma != nullptr)
REQUIRE_TRUE(gamma->rankOf() == 1 && gamma->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_BP_MKLDNN op: wrong shape of gamma array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(gamma).c_str());
if(beta != nullptr)
REQUIRE_TRUE(beta->rankOf() == 1 && beta->sizeAt(0) == input->sizeAt(axes[0]), 0, "BATCHNORM_BP_MKLDNN op: wrong shape of beta array, expected is [%lld], but got %s instead !", input->sizeAt(axes[0]), ShapeUtils::shapeAsString(beta).c_str());
// types of all input arrays should be the same (except dLdO)
for(int i = 1; i < block.width() - 1; ++i)
REQUIRE_TRUE(INPUT_VARIABLE(0)->dataType() == INPUT_VARIABLE(i)->dataType(), 0, "BATCHNORM_BP_MKLDNN op: types of all input arrays should be the same !");
NDArray *weights = nullptr, *dLdW = nullptr;
if(applyScale || applyOffset) {
weights = new NDArray(input->ordering(), {2, input->sizeAt(axes[0])}, input->dataType());
dLdW = new NDArray(input->ordering(), {2, input->sizeAt(axes[0])}, input->dataType());
if(applyScale)
(*weights)({0,1, 0,0}).assign(gamma);
else
(*weights)({0,1, 0,0}).assign(1);
if(applyOffset)
(*weights)({1,2, 0,0}).assign(beta);
else
(*weights)({1,2, 0,0}).assign(0);
}
*dLdM = 0;
*dLdV = 0;
batchnormBackPropMKLDNN(input, mean, variance, dLdO, weights, epsilon, dLdI, dLdW);
if(applyScale || applyOffset) {
if(applyScale)
dLdG->assign((*dLdW)({0,1, 0,0}));
if(applyOffset)
dLdB->assign((*dLdW)({1,2, 0,0}));
delete weights;
delete dLdW;
}
return Status::OK();
}
//////////////////////////////////////////////////////////////////////////
PLATFORM_CHECK(batchnorm_bp) {
// we don't want to use mkldnn if cpu doesn't support avx/avx2
// if (::optimalLevel() < 2)
// return false;
NDArray* input = INPUT_VARIABLE(0); // 2D:nc, 4D:nchw, 5D:ncdhw
NDArray* mean = INPUT_VARIABLE(1); // [c]
NDArray* variance = INPUT_VARIABLE(2); // [c]
NDArray* dLdO = INPUT_VARIABLE(3); // same as input
NDArray* gamma = nullptr; // [c]
NDArray* beta = nullptr; // [c]
NDArray* dLdI = OUTPUT_VARIABLE(0); // same as input
NDArray* dLdM = OUTPUT_VARIABLE(1); // [c]
NDArray* dLdV = OUTPUT_VARIABLE(2); // [c]
NDArray* dLdG = nullptr; // [c]
NDArray* dLdB = nullptr; // [c]
const bool applyScale = (bool)INT_ARG(0);
const bool applyOffset = (bool)INT_ARG(1);
if(applyScale) {
gamma = INPUT_VARIABLE(4);
dLdG = OUTPUT_VARIABLE(3);
}
if(applyOffset) {
beta = INPUT_VARIABLE(4 + (int)applyScale);
dLdB = OUTPUT_VARIABLE(3 + (int)applyScale);
}
const int numOfIntArgs = block.getIArguments()->size();
std::vector<int> axes;
if(numOfIntArgs > 2)
for(int i = 2; i < numOfIntArgs; ++i)
axes.push_back(INT_ARG(i));
else
axes.push_back(input->rankOf()-1); // default dimension to reduce along is last dimension
DataType inputType = input->dataType();
DataType meanType = mean->dataType();
DataType varType = variance->dataType();
DataType dLdOType = dLdO->dataType();
DataType gammaType = gamma != nullptr ? gamma->dataType() : DataType::FLOAT32;
DataType betaType = beta != nullptr ? beta->dataType() : DataType::FLOAT32;
DataType dLdIType = dLdI->dataType();
DataType dLdGType = gamma != nullptr ? dLdG->dataType() : DataType::FLOAT32;
DataType dLdBType = beta != nullptr ? dLdB->dataType() : DataType::FLOAT32;
const int inRank = input->rankOf();
return block.isUseMKLDNN() && axes.size() == 1 && axes[0] == 1 && (inRank == 2 || inRank == 4 || inRank == 5) &&
(inputType == DataType::FLOAT32 && meanType == DataType::FLOAT32 && varType == DataType::FLOAT32 &&
dLdOType == DataType::FLOAT32 && gammaType == DataType::FLOAT32 && betaType == DataType::FLOAT32 &&
dLdIType == DataType::FLOAT32 && dLdGType == DataType::FLOAT32 && dLdBType == DataType::FLOAT32);
}
}
}
}