Alex Black 1170827c18 Merge master to upstream (#7945)
* Shugeo strided slice zeros (#14)

* Modified strided_slice op to properly work with empty-like shapes.

* Fixed test for reduce_mean with empty-like input.

* [WIP] Last merge (#15)

* correct logsoftmax looss (#2)

* Small SameDiff listener fix (#4)

* Various fixes (#6)

* #7839 Fix for asXMatrix and tests

* #7866 EmbeddingSequenceLayer dtype fix + test

* #7856 SameDiff save/load stream methods

* #7859 RegressionEvaluation rank 4 fix + tests + axis configuration

* EvaluationBinary 3d/4d

* More evaluation 3d/4d tests

* #7847 Evaluation empty checks

* Small test ifx

* #7848 Fix median edge case

* Improve DL4J samediff layer tests

* [WIP] FastText wrapper implemented (#8)

* FastText implemented

* Some fixes

* Fix shapes for wordsNearest

* Validation of input vectors

* Fixes

* Fixed test

* Thread tagged

* Some tweaks

* setContextClassLoader for DeallocatorServiceThread

* Numpy format tests (#1)

* Various fixes (#11)

* #7852 SameDiff gather fix

* #7892 SameDiff placeholder to constant conversion

* #7890 validate input rank for MLN/CG init methods

* Fix broken permute shape calculation

* Permute and gather fixes

* Tests

* #7850 LogSumExp fix + test

* Handful of test fixes

* Empty arrays with non-scalar shapes (#10)

* minor rearrangements for lambdas

* empty tensors with non-scalar shapes

* numpy empty tensors with non-scalar shapes

* few more empty tweaks

* Small fixes

* conv3d signature update

* micro fix in batchnorm mkldnn

* Import fixes

* Fix

* MKL-DNN update

* Small fill fix

* fill with empty input + test

* Fixes

* Small error improvement

* Fix

* one special test

* couple of fixes for lstm

* Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone

* Fixes

* FP16

* Unsigned

* BFloat16

* Fill op - empty tweaks

* - couple of fixes for empty arrays construction
- stack updated

* strided slice fix

* one transform test

* provide method for reducing shapeInfo in case of input array is empty

* Fixed reduceAlongDimensions to use empty input properly.

* couple of broadcast tests

* couple of tests broadcast tests + tweak to make them pass

* add check of non-empty to methods producing sub-arrays

* Fixed reshapeC with zeros in shape.

* complete empty check in reduce_... legacy ops

* Concat and cumsum/prod

* Tweak to empty shape inference on import

* add empty check to the rest of reduce legacy ops

* one more test

* correct typo in evalReduceShapeInfoEmpty

* Added tests for reduce_* ops to tests with zero shapes.

* few more tests for empty reductions

* Fixed strided_slice op with empty case and tests.

* one more empty reduction test

* Fixed strided_slice test.

* add empty check to NDArray::reshapei

* infOrMax

* empty min/max with infinity tests

* made unstack working correctly with empty arrays

* few IndexReduce tests + tweaks for empty shapes

* add test for empty concat

* few tests fixed

* Validation fix for reductions on empty shapes

* Reverse fix

* Reduction shape calc fixes

* SameDiff.generateOutputVariable: don't use shape function to determine number of outputs

* Range fix

* - NDArray constructor updated for scalars/empty arrays
- few tests fixed

* More fixes

* Empty creator fixes

* concat fix

* concat fix

* TF import tests: allow 'both all NaN' and 'both all inf' to pass

* Slice, zero fraction, and reshape fixes

* transpose, gather

* Zero fraction

* scalar cast fix

* Empty reduction axis support

* few more tests fixed

* Fixed input checks conforming with TF for concat op and tests.

* few tests fixed

* matmul scalar shape fix

* Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats.

* broadcast bool fix

* few more tests

* few more tests

* correct evalReduceShapeInfoEmpty

* argmax/argmin + tests

* one more empty edge case + one more test

* argmax/argmin/realdiv_bp tweaks

* empty reshape test + fix

* Helper fixes

* Small fixes

* Gather test fix

* Gather test fix

* Small fixes

* reduce scalar zero values

* scalar mean workaround

* Remove debug code

* along dim mean workaround

* one more test

* - equalsTo() tweak for empty arrays
- one more test

* broadcast tweaks

* [WIP] Fixing outstanding issues for NLP (#9)

* Avoid using not-inited objects

* Test fixed.

* Redundant method avoided for models like FastText

* KMeans++ implementation

* KMeans++ implementation

* Disable parallel execution

* KMeans++

* Tests

* Dev branch merge (#16)

* SameDiff: convertDataType and gradient check util improvements (#12)

* GradCheck util improvements

* StopGradient constructor + test

* SameDiff: Add datatype conversion

* Javadoc and add DataType.isNumerical()

* Small fix

* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)

* TFGraphTestAllHelper: check intermediates in execution order

* Add missing debug listener

* [WIP] lstmBlock fix + other changes (#13)

- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite

* Small test fix

* CheckNumerics op wrapper

* Fix some issues on master (#17)

* Fix DataVec test issue

* Fix issue with dl4j SameDiff output layer

* Dtype fix for lambda layers

* #7912 BertIterator dtype fix (use float32 not global default)

* [WIP] Next set of CUDA stuff (#7)

New CUDA implementations and improvements

* bad file

* Dev branch master merge (#23)

* SameDiff: convertDataType and gradient check util improvements (#12)

* GradCheck util improvements

* StopGradient constructor + test

* SameDiff: Add datatype conversion

* Javadoc and add DataType.isNumerical()

* Small fix

* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)

* TFGraphTestAllHelper: check intermediates in execution order

* Add missing debug listener

* [WIP] lstmBlock fix + other changes (#13)

- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite

* Small test fix

* CheckNumerics op wrapper

* Compatibility of deserialization (#18)

Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>

* SameDiff: add activation gradient checking support for debugging (#19)

* SameDiff gradient checker: first pass on activation gradient checks

* Fixes + tests for activation gradient checking

* Javadoc

* [WIP] Some nd4j data type corrections (#20)

* Adjust data type

* Set correct Data type.

* Size of proper data type.

* fix averaged cpu load (#22)

* SameDiff ops, TF import and fixes (#24)

* CheckNumerics tests + fixes + misc fixes

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Fake quant

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Fixes

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* FakeQuantWithMinMaxArgs

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* CheckNumerics fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Small fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Javadoc

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Exception tweak

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Fix for out of scope stack allocated var use

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Ignores

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Ignore for known failing test (already logged issue)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Merge upstream to fork (#25)

* Add thousand-separator commas to TotalParams (#7915)

* Add thousand-separator commas to TotalParams

The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them.

* Add thousand-separator commas to MultiLayerNetwork

Corresponding change to MultiLayerNetwork

Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com>

* Update contributing and issue/PR templates (#7934)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Fix link to AdaDelta paper (#7942)

Fix link to AdaDelta paper hosted on matthewzeiler.com

Signed-off-by: Jxtps

* Fixes, and ignores for known/logged failing issues (#7943)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* SameDiff + DL4J/SameDiff: Multiple fixes (#28)

* #7919 HDF5 attribute buffer length fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7909 Arbiter constructor exception ux improvements

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7925 RNN output layer length checks

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7939 Add listener for validating inputs are not incorrectly modified

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7939 Integrate NonInplaceValidationListener into tests

* #7844 DL4J SameDiff fixes for variable minibatch size

* DL4J SameDiff fixes - ensure gradient for input placeholder is available

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Tweaks to ExternalErrorsFunction - use placeholders, make more robust

* Another fix

* More fixes

* More SameDiff/DL4J fixes

* Scope out scalar array creation in BaseScalarOp

* Remove debug code

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* [WIP] Final dev branch merge (#29)

* SameDiff: convertDataType and gradient check util improvements (#12)

* GradCheck util improvements

* StopGradient constructor + test

* SameDiff: Add datatype conversion

* Javadoc and add DataType.isNumerical()

* Small fix

* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)

* TFGraphTestAllHelper: check intermediates in execution order

* Add missing debug listener

* [WIP] lstmBlock fix + other changes (#13)

- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite

* Small test fix

* CheckNumerics op wrapper

* Compatibility of deserialization (#18)

Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>

* SameDiff: add activation gradient checking support for debugging (#19)

* SameDiff gradient checker: first pass on activation gradient checks

* Fixes + tests for activation gradient checking

* Javadoc

* [WIP] Some nd4j data type corrections (#20)

* Adjust data type

* Set correct Data type.

* Size of proper data type.

* fix averaged cpu load (#22)

* [WIP] Multiple dataset iterators (#27)

* Splitting dataset into arbitrary number

* Fixes

* Multiple split of iterator

* Test

* Test

* Some fixes

* signature change

* one more tweak

Signed-off-by: raver119 <raver119@gmail.com>

* one more test for sequential use of DataSetIteratorSplitter

Signed-off-by: raver119 <raver119@gmail.com>

* Fixes

* Fixes

* one more test for Alexander

Signed-off-by: raver119 <raver119@gmail.com>

* Some fixes

* Some fixes

* one more test for Alexander

Signed-off-by: raver119 <raver119@gmail.com>

* minor test fix

Signed-off-by: raver119 <raver119@gmail.com>

* Some fixes

* Some fixes

* couple of assertions tweaked

Signed-off-by: raver119 <raver119@gmail.com>

* MDS splitter test :/

Signed-off-by: raver119 <raver119@gmail.com>

* Minor refactoring

* Multi dataset

* Some fixes

* More tests

* Small number of test fixes/improvements (failures on CI) (#31)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* [WIP] More CUDA stuff (#26)

* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* LRN BP CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* less memory

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed bug with crop_and_resize op helper.

* get rid of unnecessary index-calculation dunction

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed sort with nth_element cuda-based helper.

* Refactored nth_element.

* Refactored nth_element op and tests.

* Modified usage of dim array with sortTad routine.

* Refactored main routine of helper for non_max_image_suppression op.

* non_max_image_suppression op helper with cuda kernel implementation. Initial revision.

* fix vol2col cuda kernel

* meh

Signed-off-by: raver119 <raver119@gmail.com>

* topK concept

Signed-off-by: raver119 <raver119@gmail.com>

* unsorted topK with scanWitdh of 1

Signed-off-by: raver119 <raver119@gmail.com>

* correct vol2col tests

* sorted/unsorted topK

Signed-off-by: raver119 <raver119@gmail.com>

* implementation and fixing col2im/col2vol

* Corrected usage flags with input/output with reverse op.

* dup is const now

Signed-off-by: raver119 <raver119@gmail.com>

* percentile op

Signed-off-by: raver119 <raver119@gmail.com>

* group tests for mapool2d

Signed-off-by: Yurii <yurii@skymind.io>

* special test for george

Signed-off-by: raver119 <raver119@gmail.com>

* less threads for sortTad

Signed-off-by: raver119 <raver119@gmail.com>

* provide conv2d for cuda

Signed-off-by: Yurii <yurii@skymind.io>

* remove auther in sort tad kernel code

Signed-off-by: Yurii <yurii@skymind.io>

* provide depthwise_conv2d for cuda

Signed-off-by: Yurii <yurii@skymind.io>

* - max_pooling_with_argmax
- null check for special use

Signed-off-by: raver119 <raver119@gmail.com>

* dts cuda

Signed-off-by: raver119 <raver119@gmail.com>

* provide sconv2d for cuda

Signed-off-by: Yurii <yurii@skymind.io>

* std cuda

Signed-off-by: raver119 <raver119@gmail.com>

* Refactored non_max_suppression op to conform TF implementation.

* Improved suppression helper.

* provide pooling3d for cuda

Signed-off-by: Yurii <yurii@skymind.io>

* minor lstm rearrangements

Signed-off-by: raver119 <raver119@gmail.com>

* more of minor lstm rearrangements

Signed-off-by: raver119 <raver119@gmail.com>

* (bi)dynamic_rnn

Signed-off-by: raver119 <raver119@gmail.com>

* templates init order

Signed-off-by: raver119 <raver119@gmail.com>

* Refactored non_max_suppression op.

* Added cuda kernel for non_max_suppression.

* CPU sort by key/value

Signed-off-by: raver119 <raver119@gmail.com>

* CPU sort TAD by key/value

Signed-off-by: raver119 <raver119@gmail.com>

* CPU sort TAD by key/value tests

Signed-off-by: raver119 <raver119@gmail.com>

* Eliminate compiler error with cuda implementation.

* - repaired gradCheck in cuda
- provide conv2d_bp for cuda

Signed-off-by: Yurii <yurii@skymind.io>

* missed signature

Signed-off-by: raver119 <raver119@gmail.com>

* provide depthwise_conv2d_bp for cuda

Signed-off-by: Yurii <yurii@skymind.io>

* Implementation of lup helper with cuda kernel. Initial commit.

* further work on backprops for convolutions

Signed-off-by: Yurii <yurii@skymind.io>

* CUDA linear sort by key/val

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA tad sort by key/val

Signed-off-by: raver119 <raver119@gmail.com>

* start providing of backprop for pooling2d/3d

Signed-off-by: Yurii <yurii@skymind.io>

* Added atomicAdd for bool datatype.

* dynamic partition concept

Signed-off-by: raver119 <raver119@gmail.com>

* dynamic partition concept

Signed-off-by: raver119 <raver119@gmail.com>

* dynamic partition scalar CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* important comment

Signed-off-by: raver119 <raver119@gmail.com>

* fix pooling2d/3d backprop helpers

Signed-off-by: Yurii <yurii@skymind.io>

* Added non-linear test with dynamic_partition.

* Improved test for dynamic_partition.

* dynamic_partition TAD concept

Signed-off-by: raver119 <raver119@gmail.com>

* - dynamic_partition TAD CUDA impl
- dynamic_partition TAD CPU fix

Signed-off-by: raver119 <raver119@gmail.com>

* - rewrite cpu code for usampling2d/3d
- write cuda code for usampling2d/3d

Signed-off-by: Yurii <yurii@skymind.io>

* dynamic_stitch CUDA vector case

Signed-off-by: raver119 <raver119@gmail.com>

* dynamic_stitch CUDA TAD case concept

Signed-off-by: raver119 <raver119@gmail.com>

* dynamic_stitch CUDA TAD case impl

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for dynamic_stitch 3D-4D cases.

* minor tests tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed type check for dynamic stitch.

* min/max bp

Signed-off-by: raver119 <raver119@gmail.com>

* rewrite code for upsampling2d/3d cpu

Signed-off-by: Yurii <yurii@skymind.io>

* reduce min/max/norm_max bp

Signed-off-by: raver119 <raver119@gmail.com>

* lup implementation. Additional enhancements.

* provide code for upsamling2d/3d backprop

Signed-off-by: Yurii <yurii@skymind.io>

* weightedCrossEntropyWithLogits

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed template math atomicMul for 64bit ints.

* Refactored dynamic_partition_bp op.

* inverseBroadcast fix

Signed-off-by: raver119 <raver119@gmail.com>

* DynamicPartitionBP test datatype fixed.

* - nd4j_atomicMul Windows fix
- cpu/NDArrayLambda.hpp excluded from CUDA

Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 18:37:04 +03:00

291 lines
12 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 15.02.2018, Alex Black
//
// implementation of gated Recurrent Unit cell
// (cf. http://arxiv.org/abs/1406.1078).
// Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, Yoshua Bengio
// "Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation"
#include<ops/declarable/helpers/gru.h>
#include <ops/declarable/CustomOperations.h>
#include<ops/declarable/helpers/transforms.h>
#include <MmulHelper.h>
namespace nd4j {
namespace ops {
namespace helpers {
//////////////////////////////////////////////////////////////////////////
void gruCell(nd4j::LaunchContext * context, const NDArray* x, const NDArray* hLast, const NDArray* Wru, const NDArray* Wc,
const NDArray* bru, const NDArray* bc,
NDArray* r, NDArray* u, NDArray* c, NDArray* h) {
//Inputs:
// x input [bS x inSize]
// hLast previous cell output [bS x numUnits], that is at previous time step t-1
// Wru RU weights - [bS, 2*numUnits] - reset and update gates
// Wc C weights - [bS, numUnits] - cell gate
// bru r and u biases, [2*numUnits] - reset and update gates
// bc c biases, [numUnits] - cell gate
//Outputs:
// r Reset gate output [bS, numUnits]
// u Update gate output [bS, numUnits]
// c Cell gate output [bS, numUnits]
// h current cell output [bS, numUnits]
const int nIn = x->sizeAt(1);
const int nU = hLast->sizeAt(1); // number of units
//Concat inputs: [x, yt-1]: concat([bs,nIn],[bs,nOut]) -> [bs, (nIn+nOut)]
nd4j::ops::concat concatOp;
std::vector<NDArray*> inputs;
std::vector<double> targs;
std::vector<Nd4jLong> iargs({1}); //Axis = 1
std::vector<bool> bargs;
inputs.emplace_back(const_cast<NDArray*>(x));
inputs.emplace_back(const_cast<NDArray*>(hLast));
auto result = concatOp.execute(inputs, targs, iargs, bargs);
auto concatOut = result->at(0);
//mmul/z for reset and update gates: (x * weight_ux + hLast * weight_xr + b_u)
auto m = mmul(*concatOut, *Wru); //mmul: [bs, (nIn+numUnits)]* [(inSize+numUnits), 2*numUnits] = [bs, 4*numUnits]
m += (*bru);
sigmoidInplace(m); //sigmoid(rz) and sigmoid(uz)
auto mr = m({0,0, 0, nU});
auto mu = m({0,0, nU, 2*nU});
r->assign(&mr);
u->assign(&mu);
//Concatenated inputs: [x, yt-1 .* r]
auto yr = (*concatOut)({0,0, nIn, nIn+nU});
yr *= (*r);
//c = tanh(x * weight_cx + (hLast .* r) * weight_cr + b_c)
MmulHelper::mmul(concatOut, const_cast<NDArray*>(Wc), c, 1.0, 0.0); //c = 1.0 * concatOut * Wc + 0.0 * c
*c += *bc;
tanhInplace(*c);
//Output: h = (1-u).*c + u .* hPrev
//auto hResult = (*u) * (*hLast) + (1.0f - *u) * (*c); const_cast<NDArray*>(h)->assign(&hResult);
u->applyPairwiseTransform(pairwise::Multiply, hLast, h, nullptr); //h = u * hLast
auto temp = (1.0f - *u);
temp *= (*c);
(*h) += temp;
delete result;
}
//////////////////////////////////////////////////////////////////////////
void gruTimeLoop(nd4j::LaunchContext * context, const NDArray* x, const NDArray* h0, const NDArray* Wx, const NDArray* Wh, const NDArray* b, NDArray* h) {
// x input [time, bS, iS]
// h0 initial cell output (at time step = 0) [bS, nU]
// Wx input-to-hidden weights, [iS, 3*nU]
// Wh hidden-to-hidden weights, [nU, 3*nU]
// b biases, [3*nU]
// h is cell outputs at each time step [time, bS, nU]
const int time = x->sizeAt(0);
NDArray ht_1(*h0);
// loop through time steps
for (int t = 0; t < time; ++t) {
auto xt = (*x)({t,t+1, 0,0, 0,0});
auto ht = (*h)({t,t+1, 0,0, 0,0});
//helpers::gruCell(&xt, &ht_1, Wx, Wh, b, &ht);
//ht_1.assign(ht);
}
}
//////////////////////////////////////////////////////////////////////////
void gruCellBP(nd4j::LaunchContext * context, const NDArray* x, const NDArray* h0, const NDArray* Wx, const NDArray* Wh, const NDArray* b, const NDArray* dLdh, const NDArray* dLdWx0,
const NDArray* dLdWh0, const NDArray* dLdb0, NDArray* dLdx, NDArray* dLdh0, NDArray* dLdWx, NDArray* dLdWh, NDArray* dLdb) {
// x input [bS, iS]
// h0 previous cell output [bS, nU], that is at previous time step t-1
// Wx input-to-hidden weights, [iS, 3*nU]
// Wh hidden-to-hidden weights, [nU, 3*nU]
// b biases, [3*nU]
// dLdh gradient wrt output, [bS,nU], that is epsilon_next
// dLdWx0 gradient wrt Wx at previous time step, [iS, 3*nU]
// dLdWh0 gradient wrt Wh at previous time step, [nU, 3*nU]
// dLdb0 gradient wrt b at previous time step, [3*nU]
// dLdx gradient wrt x, [bS, iS], that is epsilon
// dLdh0 gradient wrt h0, [bS, nU]
// dLdWx gradient wrt Wx, [iS, 3*nU]
// dLdWh gradient wrt Wh, [nU, 3*nU]
// dLdb gradient wrt b at previous time step, [3*nU]
// h is current cell output [bS, nU], that is at current time step t
const int nU = h0->sizeAt(1);
// ***** feed forward step ***** //
// gates = sigmoid(x*Wx + h0*Wh + b)
auto gates = sigmoid(mmul(*x, (*Wx)({0,0, 0,2*nU})) + mmul(*h0, (*Wh)({0,0, 0,2*nU})) + (*b)({0,2*nU})); // [bS, 2*nU] + [bS, 2*nU] + [1, 2*nU] = [bS, 2*nU]
// reset gate
auto r = gates({0,0, 0, nU}); // [bS, nU]
// update gate
auto u = gates({0,0, nU, 2*nU}); // [bS, nU]
// ◦ means element-wise product or so called Hadamard product
// n = tanh(x*Wx + (r◦h0)*Wh + b)
auto n = tanh(mmul(*x, (*Wx)({0,0, 2*nU,3*nU})) + mmul((*h0)*r, (*Wh)({0,0, 2*nU,3*nU})) + (*b)({2*nU,3*nU})); // [bS, nU]
// ***** back prop step ***** //
auto Wxr = (*Wx)({0,0, 0, nU});
auto Wxu = (*Wx)({0,0, nU, 2*nU});
auto Wxn = (*Wx)({0,0, 2*nU,3*nU});
auto Whr = (*Wh)({0,0, 0, nU});
auto Whu = (*Wh)({0,0, nU, 2*nU});
auto Whn = (*Wh)({0,0, 2*nU,3*nU});
auto WxrT = Wxr.transpose();
auto WxuT = Wxu.transpose();
auto WxnT = Wxn.transpose();
auto WhrT = Whr.transpose();
auto WhuT = Whu.transpose();
auto WhnT = Whn.transpose();
auto xT = x->transpose();
auto h0T = h0->transpose();
auto dLdWxr = (*dLdWx)({0,0, 0, nU});
auto dLdWxu = (*dLdWx)({0,0, nU, 2*nU});
auto dLdWxn = (*dLdWx)({0,0, 2*nU,3*nU});
auto dLdWhr = (*dLdWh)({0,0, 0, nU});
auto dLdWhu = (*dLdWh)({0,0, nU, 2*nU});
auto dLdWhn = (*dLdWh)({0,0, 2*nU,3*nU});
auto dLdbr = (*dLdb)({0, nU});
auto dLdbu = (*dLdb)({nU, 2*nU});
auto dLdbn = (*dLdb)({2*nU,3*nU});
auto dhdu = *h0 - n; // [bS, nU]
auto dhdn = 1.f - u; // [bS, nU]
auto dSigdu = u * (1.f - u); // [bS, nU]
auto dSigdr = r * (1.f - r); // [bS, nU]
auto dActdn = 1.f - n * n; // [bS, nU]
auto dndr = mmul(dActdn * (*h0), WhnT);
auto drdh0 = mmul(dSigdr, WhrT);
auto dLdn = (*dLdh) * dhdn;
auto dLdu = (*dLdh) * dhdu;
auto dLdr = dLdn * dndr;
dLdx->assign( mmul(dLdu * dSigdu, WxuT) + mmul(dLdr * dSigdr, WxrT) + mmul(dLdn * dActdn, WxnT) ); // [bS,iS]
dLdh0->assign( mmul(dLdu * dSigdu, WhuT) + mmul(dLdn * dActdn * (r + drdh0), WhnT) + (*dLdh)*u ); // [bS,nU]
dLdWxr.assign( mmul(xT, dSigdr * dLdr) ); // [iS,nU]
dLdWhr.assign( mmul(h0T, dSigdr * dLdr) ); // [nU,nU]
dLdWxu.assign( mmul(xT, dSigdu * dLdu) ); // [iS,nU]
dLdWhu.assign( mmul(h0T, dSigdu * dLdu) ); // [nU,nU]
dLdWxn.assign( mmul(xT, dActdn * dLdn) ); // [iS,nU]
dLdWhn.assign( mmul((r*(*h0)).transpose(), dActdn * dLdn) ); // [nU,nU]
dLdbr.assign( (dSigdr * dLdr).reduceAlongDims(reduce::Sum, {0})); // [nU]
dLdbu.assign( (dSigdu * dLdu).reduceAlongDims(reduce::Sum, {0})); // [nU]
dLdbn.assign( (dActdn * dLdn).reduceAlongDims(reduce::Sum, {0})); // [nU]
if(dLdWx0 != nullptr)
*dLdWx += *dLdWx0;
if(dLdWh0 != nullptr)
*dLdWh += *dLdWh0;
if(dLdb0 != nullptr)
*dLdb += *dLdb0;
}
// //////////////////////////////////////////////////////////////////////////
// FIXME - gruTimeLoopBP is not correct
// template <typename T>
// void gruTimeLoopBP(const std::vector<NDArray<T>*>& inArrs, const std::vector<NDArray<T>*>& outArrs) {
// NDArray<T>* x = inArrs[0]; // input [time, bS, iS]
// NDArray<T>* hi = inArrs[1]; // previous/initial cell output [bS, nU], that is at previous time step t-1
// NDArray<T>* Wx = inArrs[2]; // input-to-hidden weights, [iS, 3*nU]
// NDArray<T>* Wh = inArrs[3]; // hidden-to-hidden weights, [nU, 3*nU]
// NDArray<T>* b = inArrs[4]; // biases, [3*nU]
// NDArray<T>* dLdh = inArrs[5]; // gradient wrt output, [time, bS, nU], that is epsilon_next
// NDArray<T>* dLdx = outArrs[0]; // gradient wrt x, [time, bS, iS], that is epsilon
// NDArray<T>* dLdhi = outArrs[1]; // gradient wrt hi, [bS, nU]
// NDArray<T>* dLdWx = outArrs[2]; // gradient wrt Wx, [iS, 3*nU]
// NDArray<T>* dLdWh = outArrs[3]; // gradient wrt Wh, [nU, 3*nU]
// NDArray<T>* dLdb = outArrs[4]; // gradient wrt b, [3*nU]
// const Nd4jLong time = x->sizeAt(0);
// const Nd4jLong bS = x->sizeAt(1);
// const Nd4jLong iS = x->sizeAt(2);
// const Nd4jLong nU = hi->sizeAt(1);
// NDArray<T> h(hi->ordering(), {time, bS, nU}); // feed forward output
// // first step, time = 0, feed forward
// NDArray<T> x0 = (*x)({{0,1}, {}, {}});
// NDArray<T> h0 = h({{0,1}, {}, {}});
// helpers::gruCell<T>({&x0, hi, Wx, Wh, b}, &h0);
// // first step, time = 0, back prop
// NDArray<T> dLdx0 = (*dLdx)({{0,1}, {}, {}});
// NDArray<T> dLdh0 = (*dLdh)({{0,1}, {}, {}});
// helpers::gruCellBP<T>({&x0, hi, Wx, Wh, b, &dLdh0, nullptr, nullptr, nullptr}, {&dLdx0, dLdhi, dLdWx, dLdWh, dLdb});
// // loop through the rest time steps
// for (Nd4jLong t = time-1; t > 0; --t) {
// for (Nd4jLong t = 1; t < time; ++t) {
// NDArray<T> xt = (*x)({{t,t+1}, {}, {}});
// NDArray<T> ht = h({{t,t+1}, {}, {}});
// NDArray<T> ht_1 = h({{t-1,t}, {}, {}});
// NDArray<T> dLdxt = (*dLdx)({{t,t+1}, {}, {}});
// NDArray<T> dLdht = (*dLdh)({{t,t+1}, {}, {}});
// NDArray<T> dLdWxt_1 = dLdWx;
// NDArray<T> dLdWht_1 = dLdWh;
// NDArray<T> dLdbt_1 = dLdb;
// // feed forward, calculation of ht
// helpers::gruCell<T>({&xt, &ht_1, Wx, Wh, b}, &ht);
// // back prop
// helpers::gruCellBP<T>({&xt, &ht_1, Wx, Wh, b, &dLdht, &dLdWxt_1, &dLdWht_1, &dLdbt_1}, {&dLdxt, nullptr, dLdWx, dLdWh, dLdb});
// }
// }
}
}
}