cavis/libnd4j/include/ops/declarable/helpers/cuda/segment_sqrtn.cu

259 lines
14 KiB
Plaintext

/* ******************************************************************************
*
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership.
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author GS <sgazeos@gmail.com>
//
#include <ops/declarable/helpers/segment.h>
#include <ops/declarable/helpers/segment_common.h>
#include <array/NDArrayFactory.h>
#include <helpers/ShapeUtils.h>
#include <helpers/TAD.h>
#include <exceptions/cuda_exception.h>
#include <helpers/PointersManager.h>
#include <helpers/ConstantTadHelper.h>
namespace sd {
namespace ops {
namespace helpers {
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
static __global__ void unsortedSegmentSqrtNLinearKernel(T* input, Nd4jLong const* inputShape, I* indices, Nd4jLong const* indicesShape, int* starts, int* lengths, Nd4jLong numOfClasses, T* output, Nd4jLong const* outputShape) {
__shared__ Nd4jLong xLen, zLen;
if (threadIdx.x == 0) {
xLen = shape::length(inputShape);
zLen = shape::length(outputShape);
}
__syncthreads();
auto start = threadIdx.x + blockIdx.x * blockDim.x;
auto step = blockDim.x * gridDim.x;
for (auto idx = start; idx < xLen; idx += step) {
auto yIndex = shape::getIndexOffset(idx, indicesShape);
auto segment = indices[yIndex];
auto zIndex = shape::getIndexOffset(segment, outputShape);
if (lengths[segment] == 0) continue;
auto xIndex = shape::getIndexOffset(idx, inputShape);
sd::math::atomics::nd4j_atomicAdd(&output[zIndex], input[xIndex] / sd::math::nd4j_sqrt<int, T>(lengths[segment]));
}
}
// -------------------------------------------------------------------------------------------------------------- //
// SegmentSqrtN kernel
template <typename T, typename I>
static __global__ void segmentSqrtNTadKernel(T* inputBuf, Nd4jLong const* inputShape, Nd4jLong const* inputTads, Nd4jLong const* inputTadOffsets, I* indices, int* starts, int* lengths, Nd4jLong numOfClasses, void* outputBuf, Nd4jLong const* outputShape, Nd4jLong const* outputTads, Nd4jLong const* outputTadOffsets) {
__shared__ Nd4jLong len, total;
if (threadIdx.x == 0) {
total = shape::sizeAt(inputShape, 0);
len = shape::length(inputTads);
}
__syncthreads();
for (auto idx = blockIdx.x; idx < total; idx += gridDim.x) {
auto segment = indices[idx];
auto x = inputBuf + inputTadOffsets[idx];
auto z = reinterpret_cast<T *>(outputBuf) + outputTadOffsets[segment];
auto start = starts[segment];
auto finish = start + lengths[segment];
for (auto e = threadIdx.x; e < len; e += blockDim.x) {
auto xIndex = shape::getIndexOffset(e, inputTads);
auto zIndex = shape::getIndexOffset(e, outputTads);
sd::math::atomics::nd4j_atomicAdd(&z[zIndex], x[xIndex] / sd::math::nd4j_sqrt<int, T>(lengths[segment]));
}
}
}
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
static void unsortedSegmentSqrtNFunctor_(sd::LaunchContext* context, NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
auto stream = context->getCudaStream();
// NDArray classes = NDArrayFactory::create<int>('c', {numOfClasses, 2});
NDArray classesRangesBegs = NDArrayFactory::create<int>('c', {numOfClasses}, context);
NDArray classesRangesLens = NDArrayFactory::create<int>('c', {numOfClasses}, context);
// NDArray row = NDArrayFactory::create<int>('c', {1, 2}, {(int)indices->lengthOf(), (int)0});
// classes.applyTrueBroadcast(sd::BroadcastOpsTuple::Assign(), &row, &classes);
classesRangesBegs.assign(indices->lengthOf());
classesRangesLens.assign(0);
// dim3 dims(numOfClasses, indices->lengthOf(), numOfClasses * 32 + 32);
dim3 dims(128, 256, 256);
// int* classesBuf = reinterpret_cast<int*>(classes.specialBuffer());
fillUpSegments(indices, numOfClasses, classesRangesBegs, classesRangesLens);
int* begins = reinterpret_cast<int*>(classesRangesBegs.specialBuffer());
int* lengths = reinterpret_cast<int*>(classesRangesLens.specialBuffer());
output->nullify();
if (input->isVector()) {
unsortedSegmentSqrtNLinearKernel<T,I><<<dims.x, dims.y, dims.z, *stream>>>(
input->dataBuffer()->specialAsT<T>(), input->specialShapeInfo(),
indices->dataBuffer()->specialAsT<I>(), indices->specialShapeInfo(), begins, lengths, numOfClasses,
output->dataBuffer()->specialAsT<T>(), output->specialShapeInfo());
}
else {
output->nullify();
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
auto packX = sd::ConstantTadHelper::getInstance().tadForDimensions(input->shapeInfo(), dimensions);
auto packZ = sd::ConstantTadHelper::getInstance().tadForDimensions(output->shapeInfo(), dimensions);
auto inputTads = packX.specialShapeInfo();
auto inputTadOffsets = packX.specialOffsets();
auto outputTads = packZ.specialShapeInfo();
auto outputTadOffsets = packZ.specialOffsets();
dims.x = input->sizeAt(0);
segmentSqrtNTadKernel<T,I><<<dims.x, dims.y, dims.z, *stream>>>(
input->dataBuffer()->specialAsT<T>(), input->specialShapeInfo(), inputTads, inputTadOffsets, indices->dataBuffer()->specialAsT<I>(),
begins, lengths, numOfClasses, output->specialBuffer(), output->specialShapeInfo(), outputTads, outputTadOffsets);
}
}
// -------------------------------------------------------------------------------------------------------------- //
void unsortedSegmentSqrtNFunctor(sd::LaunchContext* context , NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
NDArray::prepareSpecialUse({output}, {input, indices});
BUILD_DOUBLE_SELECTOR(input->dataType(), indices->dataType(), unsortedSegmentSqrtNFunctor_, (context, input, indices, numOfClasses, output),
FLOAT_TYPES, INDEXING_TYPES);
NDArray::registerSpecialUse({output}, {input, indices});
}
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
static __global__ void segmentSqrtNBPLinearKernel(void* inputBuf, Nd4jLong const* inputShape, void* eps, Nd4jLong const* epsShape, void* indicesBuf, Nd4jLong const* indicesShape,
int* lengths, void* outputBuf, Nd4jLong const* outputShape) {
__shared__ T* x;
__shared__ T* gradIn;
__shared__ T* gradOut;
__shared__ I* y;
__shared__ T* z;
__shared__ Nd4jLong xLen, gradLen;
if (threadIdx.x == 0) {
xLen = shape::length(inputShape);
x = reinterpret_cast<T*>(inputBuf);
y = reinterpret_cast<I*>(indicesBuf);
z = reinterpret_cast<T*>(outputBuf);
gradOut = reinterpret_cast<T*>(eps);
gradLen = shape::length(epsShape);
}
__syncthreads();
auto start = blockIdx.x * blockDim.x + threadIdx.x;
auto step = gridDim.x * blockDim.x;
for (auto e = start; e < xLen; e += step) {
auto zOffset = shape::getIndexOffset(e, outputShape);
auto xOffset = shape::getIndexOffset(e, inputShape);
auto yOffset = shape::getIndexOffset(e, indicesShape);
auto classIndex = y[yOffset];
auto gradOffsetO = shape::getIndexOffset(classIndex, epsShape);
z[zOffset] = T(gradOut[gradOffsetO] / math::nd4j_sqrt<int, float>(lengths[classIndex]));
}
}
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
static __global__ void segmentSqrtNBPTadKernel(void* inputBuf, Nd4jLong const* inputShape, void* eps, Nd4jLong const* epsShape,
void* indicesBuf, Nd4jLong const* indicesShape, int* lengths, void* outputBuf, Nd4jLong const* outputShape,Nd4jLong const* inputTad,
Nd4jLong const* inputOffsets, Nd4jLong const* gradOutTad, Nd4jLong const* gradOutOffsets, Nd4jLong const* outTad, Nd4jLong const* outOffsets) {
__shared__ T* x;
__shared__ T* gradOut;
__shared__ I* y;
__shared__ T* z;
__shared__ Nd4jLong xLen, yLen, gradLen, currentLen;
if (threadIdx.x == 0) {
xLen = shape::length(inputShape);
x = reinterpret_cast<T*>(inputBuf);
y = reinterpret_cast<I*>(indicesBuf);
z = reinterpret_cast<T*>(outputBuf);
yLen = shape::length(indicesShape);
gradOut = reinterpret_cast<T*>(eps);
gradLen = shape::length(epsShape);
currentLen = shape::length(outTad);
}
__syncthreads();
for (auto i = blockIdx.x; i < yLen; i += gridDim.x) {
// auto yIndex = shape::getIndexOffset(i, indicesShape);
auto segment = y[i]; //yIndex];
T* currentOut = z + outOffsets[i];
T* outGrad = gradOut + gradOutOffsets[segment];
for (auto e = threadIdx.x; e < currentLen; e += blockDim.x) {
auto zIndex = shape::getIndexOffset(e, outTad);
auto gradIndex = shape::getIndexOffset(e, gradOutTad);
if (lengths[segment] > 0)
currentOut[zIndex] = T(outGrad[gradIndex] / math::nd4j_sqrt<int, float>(lengths[segment]));
}
}
}
// -------------------------------------------------------------------------------------------------------------- //
template <typename T, typename I>
static int unsortedSegmentSqrtNFunctorBP_(sd::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
auto stream = context->getCudaStream();
NDArray::prepareSpecialUse({output}, {input, indices, gradOut});
auto numClasses = indices->e<int>(indices->lengthOf() - 1) + 1;
NDArray classesRangesLens = NDArrayFactory::create<int>('c', {numClasses}, context);
NDArray classesRangesBegs = NDArrayFactory::create<int>('c', {numClasses}, context);
classesRangesBegs.assign(indices->lengthOf());
classesRangesLens.assign(0);
dim3 dims(numClasses, indices->lengthOf(), numClasses * 32 + 32);
fillUpSegments(indices, numClasses, classesRangesBegs, classesRangesLens);
int* begins = reinterpret_cast<int*>(classesRangesBegs.specialBuffer());
int* lengths = reinterpret_cast<int*>(classesRangesLens.specialBuffer());
if (input->isVector()) {
Nd4jLong loop_size = input->lengthOf();
auto numOfClasses = gradOut->lengthOf(); //indices->e<Nd4jLong>(loop_size - 1);
segmentSqrtNBPLinearKernel<T,I><<<gradOut->lengthOf(), input->lengthOf(), 256, *stream>>>(input->specialBuffer(),
input->specialShapeInfo(), gradOut->specialBuffer(), gradOut->specialShapeInfo(),
indices->specialBuffer(), indices->specialShapeInfo(), lengths, output->specialBuffer(), output->specialShapeInfo());
}
else {
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
auto packX = sd::ConstantTadHelper::getInstance().tadForDimensions(input->shapeInfo(), dimensions);
auto packZ = sd::ConstantTadHelper::getInstance().tadForDimensions(output->shapeInfo(), dimensions);
// auto packGradIn = sd::ConstantTadHelper::getInstance().tadForDimensions(tempRes.shapeInfo(), dimensions);
auto packGradOut = sd::ConstantTadHelper::getInstance().tadForDimensions(gradOut->shapeInfo(), dimensions);
auto inputTads = packX.specialShapeInfo();
auto inputTadOffsets = packX.specialOffsets();
auto outputTads = packZ.specialShapeInfo();
auto outputTadOffsets = packZ.specialOffsets();
auto gradOutTads = packGradOut.specialShapeInfo();
auto gradOutTadOffsets = packGradOut.specialOffsets();
segmentSqrtNBPTadKernel<T,I><<<indices->lengthOf(), input->lengthOf(), 256, *stream>>>(input->specialBuffer(), input->specialShapeInfo(),
gradOut->specialBuffer(), gradOut->specialShapeInfo(), indices->specialBuffer(), indices->specialShapeInfo(), lengths,
output->specialBuffer(), output->specialShapeInfo(), inputTads, inputTadOffsets, gradOutTads, gradOutTadOffsets,
outputTads, outputTadOffsets);
}
NDArray::registerSpecialUse({output}, {input, indices, gradOut});
return Status::OK();
}
// -------------------------------------------------------------------------------------------------------------- //
int unsortedSegmentSqrtNFunctorBP(sd::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
NDArray::prepareSpecialUse({output}, {input, indices, gradOut});
BUILD_DOUBLE_SELECTOR(output->dataType(), indices->dataType(), return unsortedSegmentSqrtNFunctorBP_, (context, input, indices, gradOut, numOfClasses, output), FLOAT_TYPES, INDEXING_TYPES);
NDArray::registerSpecialUse({output}, {input, indices, gradOut});
}
}
}
}