cavis/libnd4j/include/ops/declarable/helpers/cuda/merge.cu

549 lines
25 KiB
Plaintext

/* ******************************************************************************
*
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership.
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
//
#include<ops/declarable/helpers/transforms.h>
#include <array/ResultSet.h>
#include <helpers/ShapeUtils.h>
#include <numeric>
#include <array/NDArrayFactory.h>
#include <helpers/TAD.h>
#include <exceptions/cuda_exception.h>
#include <helpers/PointersManager.h>
#include <helpers/ConstantTadHelper.h>
namespace sd {
namespace ops {
namespace helpers {
//////////////////////////////////////////////////////////////////////////
template <typename T, typename Z>
static __global__ void mergeMaxIndexCudaLauncher(void** inArrs, void** inShapes, const int numArrays, void* voutput, const Nd4jLong* outputShape, Nd4jLong length) {
auto output = reinterpret_cast<Z*>(voutput);
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
const auto step = gridDim.x * blockDim.x;
for (Nd4jLong e = tid; e < length; e += step) {
T mVal = -DataTypeUtils::max<T>();
Z mIdx(0);
for (int i = 0; i < numArrays; i++) {
auto x = reinterpret_cast<T*>(inArrs[i]);
auto xShape = reinterpret_cast<Nd4jLong*>(inShapes[i]);
auto val = x[shape::getIndexOffset(e, xShape)];;
if (mVal < val) {
mIdx = static_cast<Z>(i);
mVal = val;
}
}
output[shape::getIndexOffset(e, outputShape)] = mIdx;
}
}
template <typename T, typename Z>
static void mergeMaxIndex_(sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, NDArray& output) {
int nArrSize = static_cast<int>(inArrs.size());
std::vector<const void*> inBuffers(nArrSize), inShapes(nArrSize);
for (int e = 0; e < nArrSize; e++) {
inBuffers[e] = inArrs[e]->specialBuffer();
inShapes[e] = inArrs[e]->specialShapeInfo();
}
PointersManager manager(context, "mergeMaxIndex");
auto pInBuffers = reinterpret_cast<void**>(manager.replicatePointer(inBuffers.data(), inBuffers.size() * sizeof(void*)));
auto pInShapes = reinterpret_cast<void**>(manager.replicatePointer(inShapes.data(), inShapes.size() * sizeof(void*)));
auto length = output.lengthOf();
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (length + threadsPerBlock - 1) / threadsPerBlock;
mergeMaxIndexCudaLauncher<T, Z><<<blocksPerGrid, threadsPerBlock, 512, *context->getCudaStream()>>>(pInBuffers, pInShapes, nArrSize, output.specialBuffer(), output.specialShapeInfo(), length);
manager.synchronize();
}
void mergeMaxIndex(sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, NDArray& output) {
NDArray::prepareSpecialUse({ &output }, inArrs);
BUILD_DOUBLE_SELECTOR(inArrs[0]->dataType(), output.dataType(), mergeMaxIndex_, (context, inArrs, output), LIBND4J_TYPES, INDEXING_TYPES);
NDArray::registerSpecialUse({ &output }, inArrs);
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
static __global__ void mergeMaxCudaLauncher(void** inArrs, void** inShapes, const int numArrays, void* voutput, const Nd4jLong* outputShape, Nd4jLong length) {
auto output = reinterpret_cast<T*>(voutput);
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
const auto step = gridDim.x * blockDim.x;
for (Nd4jLong e = tid; e < length; e += step) {
T mVal = -DataTypeUtils::max<T>();
for (int i = 0; i < numArrays; i++) {
auto x = reinterpret_cast<const T*>(inArrs[i]);
auto xShape = reinterpret_cast<const Nd4jLong*>(inShapes[i]);
auto val = x[shape::getIndexOffset(e, xShape)];;
if (mVal < val)
mVal = val;
}
output[shape::getIndexOffset(e, outputShape)] = mVal;
}
}
template<typename T>
static void mergeMax_(sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, NDArray& output) {
int nArrsSize = static_cast<int>(inArrs.size());
std::vector<const void*> inBuffers(nArrsSize), inShapes(nArrsSize);
for (int e = 0; e < nArrsSize; e++) {
inBuffers[e] = inArrs[e]->specialBuffer();
inShapes[e] = inArrs[e]->specialShapeInfo();
}
PointersManager manager(context, "mergeMax");
auto pInBuffers = reinterpret_cast<void**>(manager.replicatePointer(inBuffers.data(), inBuffers.size() * sizeof(void*)));
auto pInShapes = reinterpret_cast<void**>(manager.replicatePointer(inShapes.data(), inShapes.size() * sizeof(void*)));
auto length = output.lengthOf();
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (length + threadsPerBlock - 1) / threadsPerBlock;
mergeMaxCudaLauncher<T><<<blocksPerGrid, threadsPerBlock, 512, *context->getCudaStream()>>>(pInBuffers, pInShapes, nArrsSize, output.specialBuffer(), output.specialShapeInfo(), length);
manager.synchronize();
}
void mergeMax(sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, NDArray& output) {
NDArray::prepareSpecialUse({ &output }, inArrs);
BUILD_SINGLE_SELECTOR(output.dataType(), mergeMax_, (context, inArrs, output), LIBND4J_TYPES);
NDArray::registerSpecialUse({ &output }, inArrs);
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
static __global__ void mergeMaxBpCudaLauncher(
void** inArrs, void** inShapes,
const void* vgradient, const Nd4jLong* gradientShape,
const int numArrays,
void** outArrs, void** outShapes,
Nd4jLong length,
bool bSameOrderAndEws1) {
auto grad = reinterpret_cast<const T*>(vgradient);
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
const auto step = gridDim.x * blockDim.x;
int coords[MAX_RANK];
for (Nd4jLong e = tid; e < length; e += step) {
T mVal = -DataTypeUtils::max<T>();
int nMaxIndex = 0;
auto xOffset = e, zOffset = e, gradOffset = e;
if (!bSameOrderAndEws1) {
shape::index2coords(e, gradientShape, coords);
gradOffset = shape::getOffset(gradientShape, coords);
}
for (int i = 0; i < numArrays; i++) {
auto x = reinterpret_cast<T*>(inArrs[i]);
if (!bSameOrderAndEws1) {
auto xShape = reinterpret_cast<Nd4jLong*>(inShapes[i]);
xOffset = shape::getOffset(xShape, coords);
}
auto val = x[xOffset];
if (mVal < val) {
mVal = val;
nMaxIndex = i;
}
}
// outputs have to be pre-nullify
if (!bSameOrderAndEws1) {
auto outShape = reinterpret_cast<Nd4jLong*>(outShapes[nMaxIndex]);
zOffset = shape::getOffset(outShape, coords);
}
auto output = reinterpret_cast<T*>(outArrs[nMaxIndex]);
output[zOffset] = grad[gradOffset];
}
}
template<typename T>
static void mergeMaxBp_(sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, std::vector<NDArray*>& outArrs, int nArrSize, bool bSameOrderAndEws1) {
std::vector<const void*> inBuffers(nArrSize), inShapes(nArrSize), outBuffers(nArrSize), outShapes(nArrSize);
for (int e = 0; e < nArrSize; e++) {
inBuffers[e] = inArrs[e]->specialBuffer();
inShapes[e] = inArrs[e]->specialShapeInfo();
outBuffers[e] = outArrs[e]->specialBuffer();
outShapes[e] = outArrs[e]->specialShapeInfo();
}
PointersManager manager(context, "mergeMaxBp");
auto pInBuffers = reinterpret_cast<void**>(manager.replicatePointer(inBuffers.data(), inBuffers.size() * sizeof(void*)));
auto pInShapes = reinterpret_cast<void**>(manager.replicatePointer(inShapes.data(), inShapes.size() * sizeof(void*)));
auto pOutBuffers = reinterpret_cast<void**>(manager.replicatePointer(outBuffers.data(), outBuffers.size() * sizeof(void*)));
auto pOutShapes = reinterpret_cast<void**>(manager.replicatePointer(outShapes.data(), outShapes.size() * sizeof(void*)));
auto length = inArrs[nArrSize]->lengthOf();
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (length + threadsPerBlock - 1) / threadsPerBlock;
mergeMaxBpCudaLauncher<T><<<blocksPerGrid, threadsPerBlock, 512, *context->getCudaStream()>>>(pInBuffers, pInShapes, inArrs[nArrSize]->specialBuffer(),
inArrs[nArrSize]->specialShapeInfo(), nArrSize, pOutBuffers, pOutShapes,
length, bSameOrderAndEws1);
manager.synchronize();
}
void mergeMaxBp(sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, std::vector<NDArray*>& outArrs) {
// not use gradient
int nArrSize = static_cast<int>(inArrs.size() - 1);
const std::vector<const NDArray*>& out = reinterpret_cast<const std::vector<const NDArray*>&>(outArrs);
NDArray::prepareSpecialUse(out, inArrs);
bool bSameOrderAndEws1 = (1 == inArrs[nArrSize]->ews());
auto ordering = inArrs[nArrSize]->ordering();
for (int i = 0; i < nArrSize; ++i) {
bSameOrderAndEws1 &= (ordering == inArrs[i]->ordering());
bSameOrderAndEws1 &= (1 == inArrs[i]->ews());
bSameOrderAndEws1 &= (ordering == outArrs[i]->ordering());
bSameOrderAndEws1 &= (1 == outArrs[i]->ews());
}
BUILD_SINGLE_SELECTOR(inArrs[nArrSize]->dataType(), mergeMaxBp_, (context, inArrs, outArrs, nArrSize, bSameOrderAndEws1), LIBND4J_TYPES);
NDArray::registerSpecialUse( out, inArrs );
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
static __global__ void mergeAvgCudaLauncher(void** inArrs, void** inShapes, const int numArrays, void* voutput, const Nd4jLong* outputShape, Nd4jLong length) {
auto output = reinterpret_cast<T*>(voutput);
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
const auto step = gridDim.x * blockDim.x;
for (Nd4jLong e = tid; e < length; e += step) {
T sum(0.0f);
for (int i = 0; i < numArrays; i++) {
auto x = reinterpret_cast<T*>(inArrs[i]);
auto xShape = reinterpret_cast<Nd4jLong*>(inShapes[i]);
sum += x[shape::getIndexOffset(e, xShape)];
}
output[shape::getIndexOffset(e, outputShape)] = sum / numArrays;
}
}
template<typename T>
static void mergeAvg_(sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, NDArray& output) {
std::vector<const void*> inBuffers(inArrs.size()), inShapes(inArrs.size());
for (int e = 0; e < inArrs.size(); e++) {
inBuffers[e] = inArrs[e]->specialBuffer();
inShapes[e] = inArrs[e]->specialShapeInfo();
}
PointersManager manager(context, "mergeAvg");
auto pInBuffers = reinterpret_cast<void**>(manager.replicatePointer(inBuffers.data(), inBuffers.size() * sizeof(void*)));
auto pInShapes = reinterpret_cast<void**>(manager.replicatePointer(inShapes.data(), inShapes.size() * sizeof(void*)));
auto length = output.lengthOf();
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (length + threadsPerBlock - 1) / threadsPerBlock;
mergeAvgCudaLauncher<T><<<blocksPerGrid, threadsPerBlock, 512, *context->getCudaStream()>>>(pInBuffers, pInShapes, (int)inArrs.size(), output.specialBuffer(), output.specialShapeInfo(), length);
manager.synchronize();
}
void mergeAvg(sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, NDArray& output) {
NDArray::prepareSpecialUse({ &output }, inArrs);
BUILD_SINGLE_SELECTOR(output.dataType(), mergeAvg_, (context, inArrs, output), FLOAT_TYPES);
NDArray::registerSpecialUse({ &output }, inArrs);
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
static __global__ void mergeAvgBpCudaLauncher(
const void* vgradient, const Nd4jLong* gradientShape,
void** outArrs, void** outShapes,
const int numArrays,
Nd4jLong length,
bool bSameOrderAndEws1) {
auto grad = reinterpret_cast<const T*>(vgradient);
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
const auto step = gridDim.x * blockDim.x;
int coords[MAX_RANK];
for (Nd4jLong e = tid; e < length; e += step) {
auto zOffset = e, gradOffset = e;
if (!bSameOrderAndEws1) {
shape::index2coords(e, gradientShape, coords);
gradOffset = shape::getOffset(gradientShape, coords);
}
for (int i = 0; i < numArrays; i++) {
if (!bSameOrderAndEws1) {
auto outShape = reinterpret_cast<Nd4jLong*>(outShapes[i]);
zOffset = shape::getOffset(outShape, coords);
}
auto output = reinterpret_cast<T*>(outArrs[i]);
output[zOffset] = grad[gradOffset] / numArrays;
}
}
}
template<typename T>
static void mergeAvgBp_(sd::LaunchContext* context, const NDArray& gradient, std::vector<NDArray*>& outArrs, bool bSameOrderAndEws1) {
int nArrSize = static_cast<int>(outArrs.size());
std::vector<const void*> outBuffers(nArrSize), outShapes(nArrSize);
for (int e = 0; e < nArrSize; e++) {
outBuffers[e] = outArrs[e]->specialBuffer();
outShapes[e] = outArrs[e]->specialShapeInfo();
}
PointersManager manager(context, "mergeAvgBp");
auto pOutBuffers = reinterpret_cast<void**>(manager.replicatePointer(outBuffers.data(), outBuffers.size() * sizeof(void*)));
auto pOutShapes = reinterpret_cast<void**>(manager.replicatePointer(outShapes.data(), outShapes.size() * sizeof(void*)));
auto length = gradient.lengthOf();
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (length + threadsPerBlock - 1) / threadsPerBlock;
mergeAvgBpCudaLauncher<T><<<blocksPerGrid, threadsPerBlock, 512, *context->getCudaStream()>>>(gradient.specialBuffer(), gradient.specialShapeInfo(),
pOutBuffers, pOutShapes, nArrSize, length, bSameOrderAndEws1);
manager.synchronize();
}
void mergeAvgBp(sd::LaunchContext* context, const NDArray& gradient, std::vector<NDArray*>& outArrs) {
const std::vector<const NDArray*>& out = reinterpret_cast<const std::vector<const NDArray*>&>(outArrs);
NDArray::prepareSpecialUse( out, { &gradient });
bool bSameOrderAndEws1 = (1 == gradient.ews());
auto ordering = gradient.ordering();
for (const auto& v : outArrs) {
bSameOrderAndEws1 &= (ordering == v->ordering());
bSameOrderAndEws1 &= (1 == v->ews());
}
BUILD_SINGLE_SELECTOR(gradient.dataType(), mergeAvgBp_, (context, gradient, outArrs, bSameOrderAndEws1), LIBND4J_TYPES);
NDArray::prepareSpecialUse(out, { &gradient });
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
static __global__ void mergeAddCudaLauncher(void** inArrs, void** inShapes, const int numArrays, void* voutput, const Nd4jLong* outputShape, Nd4jLong length) {
auto output = reinterpret_cast<T*>(voutput);
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
const auto step = gridDim.x * blockDim.x;
for (Nd4jLong e = tid; e < length; e += step) {
T sum(0.0f);
for (int i = 0; i < numArrays; i++) {
auto x = reinterpret_cast<T*>(inArrs[i]);
auto xShape = reinterpret_cast<Nd4jLong*>(inShapes[i]);
sum += x[shape::getIndexOffset(e, xShape)];
}
output[shape::getIndexOffset(e, outputShape)] = sum;
}
}
template<typename T>
static void mergeAdd_(sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, NDArray& output) {
int nArrSize = static_cast<int>(inArrs.size());
std::vector<const void*> inBuffers(nArrSize), inShapes(nArrSize);
for (int e = 0; e < nArrSize; e++) {
inBuffers[e] = inArrs[e]->specialBuffer();
inShapes[e] = inArrs[e]->specialShapeInfo();
}
PointersManager manager(context, "mergeAdd");
auto pInBuffers = reinterpret_cast<void**>(manager.replicatePointer(inBuffers.data(), inBuffers.size() * sizeof(void*)));
auto pInShapes = reinterpret_cast<void**>(manager.replicatePointer(inShapes.data(), inShapes.size() * sizeof(void*)));
auto length = output.lengthOf();
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (length + threadsPerBlock - 1) / threadsPerBlock;
mergeAddCudaLauncher<T><<<blocksPerGrid, threadsPerBlock, 512, *context->getCudaStream()>>>(pInBuffers, pInShapes, nArrSize, output.specialBuffer(), output.specialShapeInfo(), length);
manager.synchronize();
}
BUILD_SINGLE_TEMPLATE(template void mergeAdd_, (sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, NDArray& output), NUMERIC_TYPES);
void mergeAdd(sd::LaunchContext* context, const std::vector<const NDArray*>& inArrs, NDArray& output) {
NDArray::prepareSpecialUse({ &output }, inArrs);
BUILD_SINGLE_SELECTOR(output.dataType(), mergeAdd_, (context, inArrs, output), NUMERIC_TYPES);
NDArray::registerSpecialUse({ &output }, inArrs);
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
static __global__ void mergeAddBpCudaLauncher(const void* vgradient, const Nd4jLong* gradientShape, void** outArrs, void** outShapes,
const int numArrays, Nd4jLong length, bool bSameOrderAndEws1) {
auto grad = reinterpret_cast<const T*>(vgradient);
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
const auto step = gridDim.x * blockDim.x;
int coords[MAX_RANK];
for (Nd4jLong e = tid; e < length; e += step) {
auto zOffset = e, gradOffset = e;
if (!bSameOrderAndEws1) {
shape::index2coords(e, gradientShape, coords);
gradOffset = shape::getOffset(gradientShape, coords);
}
for (int i = 0; i < numArrays; i++) {
if (!bSameOrderAndEws1) {
auto outShape = reinterpret_cast<Nd4jLong*>(outShapes[i]);
zOffset = shape::getOffset(outShape, coords);
}
auto output = reinterpret_cast<T*>(outArrs[i]);
output[zOffset] = grad[gradOffset];
}
}
}
template<typename T>
static void mergeAddBp_(sd::LaunchContext* context, const NDArray& gradient, std::vector<NDArray*>& outArrs, bool bSameOrderAndEws1) {
int nArrSize = static_cast<int>(outArrs.size());
std::vector<const void*> outBuffers(nArrSize), outShapes(nArrSize);
for (int e = 0; e < nArrSize; e++) {
outBuffers[e] = outArrs[e]->specialBuffer();
outShapes[e] = outArrs[e]->specialShapeInfo();
}
PointersManager manager(context, "mergeAddBp");
auto pOutBuffers = reinterpret_cast<void**>(manager.replicatePointer(outBuffers.data(), outBuffers.size() * sizeof(void*)));
auto pOutShapes = reinterpret_cast<void**>(manager.replicatePointer(outShapes.data(), outShapes.size() * sizeof(void*)));
auto length = gradient.lengthOf();
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (length + threadsPerBlock - 1) / threadsPerBlock;
mergeAddBpCudaLauncher<T><<<blocksPerGrid, threadsPerBlock, 512, *context->getCudaStream()>>>(gradient.specialBuffer(), gradient.specialShapeInfo(),
pOutBuffers, pOutShapes, nArrSize, length, bSameOrderAndEws1);
manager.synchronize();
}
void mergeAddBp(sd::LaunchContext* context, const NDArray& gradient, std::vector<NDArray*>& outArrs) {
const std::vector<const NDArray*>& out = reinterpret_cast<const std::vector<const NDArray*>& >(outArrs);
NDArray::prepareSpecialUse( out, { &gradient });
bool bSameOrderAndEws1 = (1 == gradient.ews());
auto ordering = gradient.ordering();
for (const auto& v : outArrs) {
bSameOrderAndEws1 &= (ordering == v->ordering());
bSameOrderAndEws1 &= (1 == v->ews());
}
BUILD_SINGLE_SELECTOR(gradient.dataType(), mergeAddBp_, (context, gradient, outArrs, bSameOrderAndEws1), LIBND4J_TYPES);
NDArray::prepareSpecialUse( out, { &gradient });
}
}
}
}