cavis/libnd4j/include/ops/declarable/helpers/cuda/convolutions_col2vol.cu

135 lines
5.5 KiB
Plaintext

/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
//
// @author Yurii Shyrma (iuriish@yahoo.com)
//
#include <ops/declarable/helpers/convolutions.h>
#include <helpers/PointersManager.h>
#include <math/templatemath.h>
namespace sd {
namespace ops {
//////////////////////////////////////////////////////////////////////////
// columns [bS, iC, kD, kH, kW, oD, oH, oW] to be de-convoluted to volume [bS, iC, iD, iH, iW]
template <typename T>
static __global__ void col2volCuda(const void* columns, const Nd4jLong* colShapeInfo, void* volume, const Nd4jLong* volShapeInfo, const int sD, const int sH, const int sW, const int pD, const int pH, const int pW, const int dD, const int dH, const int dW) {
const T* col = reinterpret_cast<const T*>(columns);
T* vol = reinterpret_cast<T*>(volume);
__shared__ uint kD, kH, kW, oD, oH, oW, *sharedMem;
__shared__ Nd4jLong volLen;
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
sharedMem = reinterpret_cast<uint*>(shmem);
oD = colShapeInfo[6];
oH = colShapeInfo[7];
oW = colShapeInfo[8];
kD = dD * (colShapeInfo[3] - 1) + 1;
kH = dH * (colShapeInfo[4] - 1) + 1;
kW = dW * (colShapeInfo[5] - 1) + 1;
volLen = shape::length(volShapeInfo);
}
__syncthreads();
auto coords = sharedMem + threadIdx.x * 8;
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
for (Nd4jLong i = tid; i < volLen; i += gridDim.x * blockDim.x) {
shape::index2coords(i, volShapeInfo, coords);
const auto volOffset = shape::getOffset(volShapeInfo, coords);
const auto bSiCoffset = coords[0] * colShapeInfo[9] + coords[1] * colShapeInfo[10];
const uint imD = coords[2] + pD;
const uint imH = coords[3] + pH;
const uint imW = coords[4] + pW;
const uint colDstart = (imD < kD) ? 0 : (imD - kD) / sD + 1;
const uint colHstart = (imH < kH) ? 0 : (imH - kH) / sH + 1;
const uint colWstart = (imW < kW) ? 0 : (imW - kW) / sW + 1;
const uint colDend = sd::math::nd4j_min<uint>(imD / sD + 1, oD);
const uint colHend = sd::math::nd4j_min<uint>(imH / sH + 1, oH);
const uint colWend = sd::math::nd4j_min<uint>(imW / sW + 1, oW);
T val = 0;
for(uint colD = colDstart; colD < colDend; ++colD) {
coords[2] = imD - colD * sD;
if(coords[2] % dD != 0) continue;
for(uint colH = colHstart; colH < colHend; ++colH) {
coords[3] = imH - colH * sH;
if(coords[3] % dH != 0) continue;
for(uint colW = colWstart; colW < colWend; ++colW) {
coords[4] = imW - colW * sW;
if(coords[4] % dW != 0) continue;
val += col[bSiCoffset + (coords[2]/dD)*colShapeInfo[11] + (coords[3]/dH)*colShapeInfo[12] + (coords[4]/dW)*colShapeInfo[13] + colD*colShapeInfo[14] + colH*colShapeInfo[15] + colW*colShapeInfo[16]];
}
}
}
vol[volOffset] = val;
}
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
static void col2volCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream,
const void* columns, const Nd4jLong* colShapeInfo,
void* volume, const Nd4jLong* volShapeInfo,
const int sD, const int sH, const int sW, const int pD, const int pH, const int pW, const int dD, const int dH, const int dW) {
col2volCuda<T><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(columns, colShapeInfo, volume, volShapeInfo, sD, sH, sW, pD, pH, pW, dD, dH, dW);
}
//////////////////////////////////////////////////////////////////////////
void ConvolutionUtils::col2vol(sd::graph::Context& block, const NDArray& col, NDArray& vol, const int sD, const int sH, const int sW, const int pD, const int pH, const int pW, const int dD, const int dH, const int dW) {
PointersManager manager(block.launchContext(), "col2vol");
const int threadsPerBlock = MAX_NUM_THREADS / 4;
const int blocksPerGrid = (vol.lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
const int sharedMem = col.rankOf() * sizeof(uint) * threadsPerBlock + 256;
NDArray::prepareSpecialUse({&vol}, {&col});
BUILD_SINGLE_SELECTOR(vol.dataType(), col2volCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, block.launchContext()->getCudaStream(), col.specialBuffer(), col.specialShapeInfo(), vol.specialBuffer(), vol.specialShapeInfo(), sD, sH, sW, pD, pH, pW, dD, dH, dW), FLOAT_TYPES);
NDArray::registerSpecialUse({&vol}, {&col});
manager.synchronize();
}
}
}