cavis/libnd4j/include/ops/declarable/helpers/cuda/concat.cu

195 lines
7.4 KiB
Plaintext

/* ******************************************************************************
*
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership.
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
//
#include<ops/declarable/helpers/transforms.h>
#include <array/ResultSet.h>
#include <helpers/ShapeUtils.h>
#include <numeric>
#include <array/NDArrayFactory.h>
#include <helpers/TAD.h>
#include <exceptions/cuda_exception.h>
#include <helpers/PointersManager.h>
#include <helpers/ConstantTadHelper.h>
namespace sd {
namespace ops {
namespace helpers {
///////////////////////////////////////////////////////////////////
template<typename T>
__global__ static void concatCuda(void* pVx, void* pxShapeInfo, void* vz, const Nd4jLong* zShapeInfo, const int axis) {
T* z = reinterpret_cast<T*>(vz);
__shared__ Nd4jLong zLen, totalThreads;
__shared__ int rank;
if (threadIdx.x == 0) {
zLen = shape::length(zShapeInfo);
rank = shape::rank(zShapeInfo);
totalThreads = gridDim.x * blockDim.x;
}
__syncthreads();
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
int coords[MAX_RANK];
for (Nd4jLong i = tid; i < zLen; i += totalThreads) {
shape::index2coords(i, zShapeInfo, coords);
const auto zOffset = shape::getOffset(zShapeInfo, coords);
int inArrIdx = 0;
Nd4jLong *xShapeInfo = reinterpret_cast<Nd4jLong **>(pxShapeInfo)[inArrIdx];
while (coords[axis] >= xShapeInfo[axis + 1]) {
coords[axis] -= xShapeInfo[axis + 1];
xShapeInfo = reinterpret_cast<Nd4jLong **>(pxShapeInfo)[++inArrIdx];
}
const auto *x = reinterpret_cast<T *>(reinterpret_cast<void **>(pVx)[inArrIdx]);
const auto xOffset = shape::getOffset(xShapeInfo, coords);
z[zOffset] = x[xOffset];
}
}
///////////////////////////////////////////////////////////////////
template<typename T>
__host__ static void concatCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream,
void* pVx, void* pxShapeInfo, void* vz, const Nd4jLong* zShapeInfo, const int axis) {
concatCuda<T><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(pVx, pxShapeInfo, vz, zShapeInfo, axis);
}
//////////////////////////////////////////////////////////////////////////
void concat(sd::LaunchContext * context, const std::vector<const NDArray*>& inArrs, NDArray& output, const int axis) {
const int numOfInArrs = inArrs.size();
const auto sizeofT = output.sizeOfT();
NDArray::prepareSpecialUse({&output}, inArrs);
bool luckCase1 = ((axis == 0 && output.ordering() == 'c') || (axis == output.rankOf() - 1 && output.ordering() == 'f')) && output.ews() == 1;
if(luckCase1) {
for (uint i = 0; i < numOfInArrs; ++i) {
luckCase1 &= inArrs[i]->ordering() == output.ordering() && inArrs[i]->ews() == 1;
if(!luckCase1)
break;
}
}
if(luckCase1) { // for example {1,10} + {2,10} + {3,10} = {6, 10} order c; or {10,1} + {10,2} + {10,3} = {10, 6} order f
void* z = static_cast<int8_t*>(output.specialBuffer());
for (uint i = 0; i < numOfInArrs; ++i) {
const auto memAmountToCopy = inArrs[i]->lengthOf() * sizeofT;
cudaMemcpyAsync(z, reinterpret_cast<const int8_t*>(inArrs[i]->specialBuffer()), memAmountToCopy, cudaMemcpyDeviceToDevice, *context->getCudaStream());
z = static_cast<int8_t*>(z) + memAmountToCopy;
}
if(cudaStreamSynchronize(*context->getCudaStream()) != 0)
throw std::runtime_error("concat cuda: luckCase1 failed!");
for(int i = 0; i < numOfInArrs; ++i)
inArrs[i]->tickReadDevice();
output.tickWriteDevice();
return;
}
// const bool isZcontin = output.strideAt(axis) == 1;
// bool areInputsContin = true;
// bool allSameOrder = true;
// std::vector<Nd4jLong> strideOfContigStride(numOfInArrs);
// if(isZcontin) {
// for (uint i = 0; i < inArrs.size(); ++i) {
// areInputsContin &= inArrs[i]->strideAt(axis) == 1;
// allSameOrder &= output.ordering() == inArrs[i]->ordering();
// if(!areInputsContin || !allSameOrder)
// break;
// strideOfContigStride[i] = shape::strideOverContigAxis(axis, inArrs[i]->shapeInfo());
// }
// }
// const bool luckCase2 = isZcontin && areInputsContin && allSameOrder;
// if(luckCase2) { // for example {2,1,3} + {2,5,3} + {2,10,3} = {2,16,3}, here axis 1 shoud have stride = 1 for all inputs arrays and output array
// const auto zStep = shape::strideOverContigAxis(axis, output.shapeInfo());
// for (uint i = 0; i < output.lengthOf() / output.sizeAt(axis); ++i) {
// const auto iShift = i * sizeofT;
// void* z = static_cast<int8_t*>(output.specialBuffer()) + zStep * iShift;
// for (uint j = 0; j < numOfInArrs; ++j) {
// const auto xDim = inArrs[j]->sizeAt(axis);
// void* x = static_cast<int8_t*>(inArrs[j]->specialBuffer()) + strideOfContigStride[j] * iShift;
// const auto memSizeToCopy = xDim * sizeofT;
// cudaMemcpyAsync(z, x, memSizeToCopy, cudaMemcpyDeviceToDevice, *context->getCudaStream());
// z = static_cast<int8_t*>(z) + memSizeToCopy;
// }
// }
// if(cudaStreamSynchronize(*context->getCudaStream()) != 0)
// throw std::runtime_error("concat cuda: luckCase2 failed!");
// }
// else { // general (slower) case
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (output.lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
const int sharedMem = 256;
// prepare arrays of pointers on buffers and shapes
std::vector<const void*> hInBuffers(numOfInArrs);
std::vector<const Nd4jLong*> hInShapeInfo(numOfInArrs);
for(int i = 0; i < numOfInArrs; ++i) {
hInBuffers[i] = inArrs[i]->specialBuffer();
hInShapeInfo[i] = inArrs[i]->specialShapeInfo();
}
PointersManager manager(context, "helpers::concat");
void* dInBuffers = manager.replicatePointer(hInBuffers.data(), hInBuffers.size() * sizeof(void*));
void* dInShapeInfo = manager.replicatePointer(hInShapeInfo.data(), hInShapeInfo.size() * sizeof(Nd4jLong*));
BUILD_SINGLE_SELECTOR(inArrs[0]->dataType(), concatCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), dInBuffers, dInShapeInfo, output.specialBuffer(), output.specialShapeInfo(), axis), LIBND4J_TYPES);
manager.synchronize();
// }
NDArray::registerSpecialUse({&output}, inArrs);
}
}
}
}