73 lines
3.0 KiB
C++
73 lines
3.0 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author GS (sgazeos@gmail.com), created on 10/1/2018
|
|
//
|
|
|
|
|
|
#include<ops/declarable/helpers/cross.h>
|
|
#include <helpers/ShapeUtils.h>
|
|
#include <ops/declarable/CustomOperations.h>
|
|
|
|
namespace nd4j {
|
|
namespace ops {
|
|
namespace helpers {
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template <typename T>
|
|
static void weightedCrossEntropyWithLogitsFunctor_(NDArray const* targets, NDArray const* input, NDArray const* weights, NDArray* output) {
|
|
|
|
T posWeight = weights->e<T>(0);
|
|
|
|
auto mainRoutineT1 = LAMBDA_TT(_x, _z, posWeight) {
|
|
T targetWeight = (1. + (posWeight - (T)1.f) * _z);
|
|
return (1. - _z) * _x +
|
|
targetWeight * (nd4j::math::nd4j_log<T,T>((T)1.f + nd4j::math::nd4j_exp<T,T>(-nd4j::math::nd4j_abs(_x))) +
|
|
nd4j::math::nd4j_max(-_x, T(0.f))
|
|
);
|
|
};
|
|
|
|
auto mainRoutineT2 = LAMBDA_TTT(_x, _z, _w) {
|
|
return (((T)1.0 - _z) * _x) +
|
|
_w * (nd4j::math::nd4j_log<T,T>(T(1.) + nd4j::math::nd4j_exp<T,T>(-nd4j::math::nd4j_abs(_x))) +
|
|
nd4j::math::nd4j_max(-_x, T(0.f)));
|
|
};
|
|
|
|
|
|
if (weights->isScalar()) {
|
|
const_cast<NDArray*>(input)->applyPairwiseLambda<T>(const_cast<NDArray*>(targets), mainRoutineT1, output);
|
|
}
|
|
else
|
|
{
|
|
std::unique_ptr<NDArray> targetVector(new NDArray(*weights));
|
|
targetVector->applyScalar(scalar::Add, -1.f);
|
|
|
|
std::unique_ptr<NDArray> targetTensor(new NDArray(*targets));
|
|
*targetTensor = (*targetVector * *targetTensor) + T(1.f);
|
|
const_cast<NDArray*>(input)->applyTriplewiseLambda<T>(const_cast<NDArray*>(targets), targetTensor.get(), mainRoutineT2, output);
|
|
}
|
|
}
|
|
|
|
void weightedCrossEntropyWithLogitsFunctor(nd4j::LaunchContext * context, NDArray const* targets, NDArray const* input, NDArray const* weights, NDArray* output) {
|
|
BUILD_SINGLE_SELECTOR(targets->dataType(), weightedCrossEntropyWithLogitsFunctor_, (targets, input, weights, output), FLOAT_TYPES);
|
|
}
|
|
BUILD_SINGLE_TEMPLATE(template void weightedCrossEntropyWithLogitsFunctor_, (NDArray const* targets, NDArray const* input, NDArray const* weights, NDArray* output), FLOAT_TYPES);
|
|
|
|
}
|
|
}
|
|
} |