raver119 c969b724bb [WIP] more CUDA stuff (#57)
* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* Added gradcheck test for dynamic_partition_bp op.

* - implementation of dilation op (cpu and cuda)

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed broadcast_dynamic_shape 1D case and tests.

* Fixed usage of default integer arguments.

* Fixed dynamic_partition_bp op and tests.

* Eliminated test with grad check for dynamic_partition_bp op.

* start working on cuda svd - porting available corresponding api from cuSOLVER library

Signed-off-by: Yurii <yurii@skymind.io>

* provide prelu_bp

Signed-off-by: Yurii <yurii@skymind.io>

* - provide gruCell_bp (old version ??)

Signed-off-by: Yurii <yurii@skymind.io>

* - polishing cumsum_bp and cumprod_bp tests

Signed-off-by: Yurii <yurii@skymind.io>

* provide sparseSoftmaxCrossEntropyWithLogits and sparseSoftmaxCrossEntropyWithLogits_grad

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed atomicMul with float input/output

* implementation of cuda kernel for triu_bp operation

Signed-off-by: Yurii <yurii@skymind.io>

* Refactored lup helper to add parrallel computing.

* cusolver libraries

Signed-off-by: raver119 <raver119@gmail.com>

* uncomment cuSolver APIs in svd.cu

Signed-off-by: Yurii <yurii@skymind.io>

* cusolver var

Signed-off-by: raver119 <raver119@gmail.com>

* - further work on cuSolver svd

Signed-off-by: Yurii <yurii@skymind.io>

* Implement usage of cuda solver to LUP decomposition.

* - correct naames in lup functions

Signed-off-by: Yurii <yurii@skymind.io>

* correct svdQR cuda

Signed-off-by: Yurii <yurii@skymind.io>

* - provide transpositions of input matrices in case of c order in svdCudaQR

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed implementation issues with LUP usign cuda solver.

* Implementation of matrix_determinant helper with cuda kernels. Working revision.

* Implemented log_matrix_determinant helper with cuda kernels.

* - implementation of batched cuda svd

Signed-off-by: Yurii <yurii@skymind.io>

* Refactored cholesky helper and implementation of cuda solver cholesky batch.

* - implementation of cuda kernel for tile bp

Signed-off-by: Yurii <yurii@skymind.io>

* Implementation of cholesky and logdet with cuda kernels.

* - implementation of cuda kernel for sru_bidirectional

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed cholesky helper.

* Cholesky op helper implementation. Working double-based cublas implementation.

* bad import excluded

Signed-off-by: raver119 <raver119@gmail.com>

* Finished with cuda implementation of cholesky helper and tests.

* - implementation of cuda kernel for sru_bidirectional_backprop operation

Signed-off-by: Yurii <yurii@skymind.io>

* Implementation of matrix_inverse op helper with cuda kernels. The first revision.

* - start working on gruCell_bp

Signed-off-by: Yurii <yurii@skymind.io>

* Implementation of matrix_inverse helper.

* - further work on new gruCell_bp

Signed-off-by: Yurii <yurii@skymind.io>

* cuBLAS related fixes

Signed-off-by: raver119 <raver119@gmail.com>

* calculateOutputShapes() now passes device buffers as well

Signed-off-by: raver119 <raver119@gmail.com>

* special concat/average/accumulate init host pointers now

Signed-off-by: raver119 <raver119@gmail.com>

* few more tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* additional CudaDataBufferFactory signatures certain for data types

Signed-off-by: raver119 <raver119@gmail.com>

* cuSolver host buffer

Signed-off-by: raver119 <raver119@gmail.com>

* buffer to buffer memcpy host ptr allocation

Signed-off-by: raver119 <raver119@gmail.com>
2019-07-20 23:05:21 +10:00

144 lines
5.3 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include <ops/declarable/helpers/scatter.h>
#include <numeric>
#include <helpers/ShapeUtils.h>
namespace nd4j {
namespace ops {
namespace helpers {
void scatter(nd4j::LaunchContext *context, pairwise::Ops op, const NDArray& indices, const NDArray& updates, NDArray& output, const bool lock) {
const int outRank = output.rankOf();
const int indRank = indices.rankOf();
const int updRank = updates.rankOf();
const Nd4jLong indLen = indices.lengthOf();
if(outRank == 1) {
<<<<<<< HEAD
// PRAGMA_OMP_PARALLEL_FOR_ARGS(if(indLen > Environment::getInstance()->elementwiseThreshold()) schedule(guided))
PRAGMA_OMP_PARALLEL_FOR_ARGS(if(!lock) schedule(guided))
for(Nd4jLong i = 0; i < indLen; ++i) {
for(Nd4jLong i = 0; i < indLen; ++i) {
Nd4jLong idx = indices.e<Nd4jLong>(i);
NDArray out = output({idx, idx+1});
out.applyPairwiseTransform(op, updates.e(i), nullptr);
}
}
else { // outRank > 1
int sizeOfDims = indRank;
if(outRank == updRank && indices.isVector())
sizeOfDims = 1;
std::vector<int> dimsToExcludeUpd(sizeOfDims);
std::iota(dimsToExcludeUpd.begin(), dimsToExcludeUpd.end(), 0);
// PRAGMA_OMP_PARALLEL_FOR_ARGS(if(indLen > Environment::getInstance()->elementwiseThreshold()) schedule(guided)) // causes known openMP asan bug !
PRAGMA_OMP_PARALLEL_FOR_ARGS(if(!lock) schedule(guided))
for(Nd4jLong i = 0; i < indLen; ++i) {
NDArray outSubArr = output(indices.e<Nd4jLong>(i), std::vector<int>({0}));
NDArray updSubArr = updates(i, dimsToExcludeUpd);
outSubArr.applyPairwiseTransform(op, updSubArr, nullptr);
}
}
}
///////////////////////////////////////////////////////////////////
void scatterND(nd4j::LaunchContext *context, pairwise::Ops op, const NDArray& indices, const NDArray& updates, NDArray& output, const bool lock) {
const Nd4jLong indLen = indices.lengthOf();
const int outRank = output.rankOf();
const int indRank = indices.rankOf();
const Nd4jLong indLastDim = indices.sizeAt(-1);
if(outRank == 1) {
// PRAGMA_OMP_PARALLEL_FOR_ARGS(if(indLen > Environment::getInstance()->elementwiseThreshold()) schedule(guided))
PRAGMA_OMP_PARALLEL_FOR_ARGS(if(!lock) schedule(guided))
for(Nd4jLong i = 0; i < indLen; ++i) {
Nd4jLong idx = indices.e<Nd4jLong>(i);
NDArray out = output({idx, idx+1});
out.applyPairwiseTransform(op, updates.e(i), nullptr);
}
}
else {
std::vector<int> dimsToExcludeInd = ShapeUtils::evalDimsToExclude(indRank, {indRank-1});
std::vector<int> dimsToExcludeUpd(indRank - 1);
std::iota(dimsToExcludeUpd.begin(), dimsToExcludeUpd.end(), 0);
std::vector<Nd4jLong> idxRangeOut(2*outRank, 0);
// PRAGMA_OMP_PARALLEL_FOR_ARGS(if(indLen/indLastDim > Environment::getInstance()->elementwiseThreshold()) schedule(guided) firstprivate(idxRangeOut))
PRAGMA_OMP_PARALLEL_FOR_ARGS(if(!lock) schedule(guided) firstprivate(idxRangeOut))
for(Nd4jLong i = 0; i < indLen/indLastDim; ++i) {
NDArray indSubArr = indices(i, dimsToExcludeInd);
for(Nd4jLong j = 0; j < indLastDim; ++j) {
idxRangeOut[2*j] = indSubArr.e<Nd4jLong>(j);
idxRangeOut[2*j + 1] = idxRangeOut[2*j] + 1;
}
NDArray outSubArr = output(idxRangeOut);
NDArray updSubArr = updates(i, dimsToExcludeUpd);
outSubArr.applyPairwiseTransform(op, updSubArr, nullptr);
}
}
}
void scatterForLoss(nd4j::LaunchContext *context, const NDArray& indices, NDArray& updates, NDArray& output, const bool calcGrad) {
// shapes of indices and output must be the same
// shape of indices should be the same as updates shape with last dimension excluded
// for example if updates is {a,b,c} then indices should be {a,b}
const Nd4jLong indicesLen = indices.lengthOf();
std::vector<int> dimsToExclude = ShapeUtils::evalDimsToExclude(updates.rankOf(), {-1});
if(!calcGrad) {
PRAGMA_OMP_PARALLEL_FOR_ARGS(schedule(guided))
for(Nd4jLong i = 0; i < indicesLen; ++i) {
auto subArr = updates(i, dimsToExclude);
output.p(i, subArr.e(indices.e<Nd4jLong>(i)));
}
} else {
PRAGMA_OMP_PARALLEL_FOR_ARGS(schedule(guided))
for(Nd4jLong i = 0; i < indicesLen; ++i) {
auto subArr = updates(i, dimsToExclude);
auto ind = indices.e<Nd4jLong>(i);
subArr.p(ind, subArr.e(ind) - 1.);
}
}
}