c969b724bb
* initial commit Signed-off-by: raver119 <raver119@gmail.com> * Added gradcheck test for dynamic_partition_bp op. * - implementation of dilation op (cpu and cuda) Signed-off-by: Yurii <yurii@skymind.io> * Fixed broadcast_dynamic_shape 1D case and tests. * Fixed usage of default integer arguments. * Fixed dynamic_partition_bp op and tests. * Eliminated test with grad check for dynamic_partition_bp op. * start working on cuda svd - porting available corresponding api from cuSOLVER library Signed-off-by: Yurii <yurii@skymind.io> * provide prelu_bp Signed-off-by: Yurii <yurii@skymind.io> * - provide gruCell_bp (old version ??) Signed-off-by: Yurii <yurii@skymind.io> * - polishing cumsum_bp and cumprod_bp tests Signed-off-by: Yurii <yurii@skymind.io> * provide sparseSoftmaxCrossEntropyWithLogits and sparseSoftmaxCrossEntropyWithLogits_grad Signed-off-by: Yurii <yurii@skymind.io> * Fixed atomicMul with float input/output * implementation of cuda kernel for triu_bp operation Signed-off-by: Yurii <yurii@skymind.io> * Refactored lup helper to add parrallel computing. * cusolver libraries Signed-off-by: raver119 <raver119@gmail.com> * uncomment cuSolver APIs in svd.cu Signed-off-by: Yurii <yurii@skymind.io> * cusolver var Signed-off-by: raver119 <raver119@gmail.com> * - further work on cuSolver svd Signed-off-by: Yurii <yurii@skymind.io> * Implement usage of cuda solver to LUP decomposition. * - correct naames in lup functions Signed-off-by: Yurii <yurii@skymind.io> * correct svdQR cuda Signed-off-by: Yurii <yurii@skymind.io> * - provide transpositions of input matrices in case of c order in svdCudaQR Signed-off-by: Yurii <yurii@skymind.io> * Fixed implementation issues with LUP usign cuda solver. * Implementation of matrix_determinant helper with cuda kernels. Working revision. * Implemented log_matrix_determinant helper with cuda kernels. * - implementation of batched cuda svd Signed-off-by: Yurii <yurii@skymind.io> * Refactored cholesky helper and implementation of cuda solver cholesky batch. * - implementation of cuda kernel for tile bp Signed-off-by: Yurii <yurii@skymind.io> * Implementation of cholesky and logdet with cuda kernels. * - implementation of cuda kernel for sru_bidirectional Signed-off-by: Yurii <yurii@skymind.io> * Fixed cholesky helper. * Cholesky op helper implementation. Working double-based cublas implementation. * bad import excluded Signed-off-by: raver119 <raver119@gmail.com> * Finished with cuda implementation of cholesky helper and tests. * - implementation of cuda kernel for sru_bidirectional_backprop operation Signed-off-by: Yurii <yurii@skymind.io> * Implementation of matrix_inverse op helper with cuda kernels. The first revision. * - start working on gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * Implementation of matrix_inverse helper. * - further work on new gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * cuBLAS related fixes Signed-off-by: raver119 <raver119@gmail.com> * calculateOutputShapes() now passes device buffers as well Signed-off-by: raver119 <raver119@gmail.com> * special concat/average/accumulate init host pointers now Signed-off-by: raver119 <raver119@gmail.com> * few more tweaks Signed-off-by: raver119 <raver119@gmail.com> * additional CudaDataBufferFactory signatures certain for data types Signed-off-by: raver119 <raver119@gmail.com> * cuSolver host buffer Signed-off-by: raver119 <raver119@gmail.com> * buffer to buffer memcpy host ptr allocation Signed-off-by: raver119 <raver119@gmail.com> |
||
---|---|---|
.. | ||
blas | ||
cmake | ||
include | ||
minifier | ||
msi | ||
packages | ||
profile | ||
server | ||
tests_cpu | ||
.gitignore | ||
AddingNewOps.md | ||
CMakeLists.txt | ||
CMakeLists.txt.in | ||
CMakeSettings.json | ||
LICENSE | ||
README.md | ||
RaspberryPi.md | ||
UnderstandingGraph.md | ||
assembly-cuda.xml | ||
assembly.xml | ||
buildnativeoperations.sh | ||
cibuild.sh | ||
development.md | ||
flatproto.txt | ||
iOS.md | ||
linuxOnPower.md | ||
macOSx10 (CPU only).md | ||
pom.xml | ||
proto.sh | ||
setuposx.sh | ||
windows.md |
README.md
LibND4J
Native operations for nd4j. Build using cmake
Prerequisites
- GCC 4.9+
- CUDA 8.0 or 9.0 (if desired)
- CMake 3.8 (as of Nov 2017, in near future will require 3.9)
Additional build arguments
There's few additional arguments for buildnativeoperations.sh
script you could use:
-a XXXXXXXX// shortcut for -march/-mtune, i.e. -a native
-b release OR -b debug // enables/desables debug builds. release is considered by default
-j XX // this argument defines how many threads will be used to binaries on your box. i.e. -j 8
-cc XX// CUDA-only argument, builds only binaries for target GPU architecture. use this for fast builds
You can find the compute capability for your card on the NVIDIA website here.
For example, a GTX 1080 has compute capability 6.1, for which you would use -cc 61
(note no decimal point).
OS Specific Requirements
Android
Download the NDK, extract it somewhere, and execute the following commands, replacing android-xxx
with either android-arm
or android-x86
:
git clone https://github.com/deeplearning4j/libnd4j
git clone https://github.com/deeplearning4j/nd4j
export ANDROID_NDK=/path/to/android-ndk/
cd libnd4j
bash buildnativeoperations.sh -platform android-xxx
cd ../nd4j
mvn clean install -Djavacpp.platform=android-xxx -DskipTests -pl '!:nd4j-cuda-9.0,!:nd4j-cuda-9.0-platform,!:nd4j-tests'
OSX
Run ./setuposx.sh (Please ensure you have brew installed)
Linux
Depends on the distro - ask in the earlyadopters channel for specifics on distro
Ubuntu Linux 15.10
wget http://developer.download.nvidia.com/compute/cuda/7.5/Prod/local_installers/cuda-repo-ubuntu1504-7-5-local_7.5-18_amd64.deb
sudo dpkg -i cuda-repo-ubuntu1504-7-5-local_7.5-18_amd64.deb
sudo apt-get update
sudo apt-get install cuda
sudo apt-get install cmake
sudo apt-get install gcc-4.9
sudo apt-get install g++-4.9
sudo apt-get install git
git clone https://github.com/deeplearning4j/libnd4j
cd libnd4j/
export LIBND4J_HOME=~/libnd4j/
sudo rm /usr/bin/gcc
sudo rm /usr/bin/g++
sudo ln -s /usr/bin/gcc-4.9 /usr/bin/gcc
sudo ln -s /usr/bin/g++-4.9 /usr/bin/g++
./buildnativeoperations.sh
./buildnativeoperations.sh -c cuda -сс YOUR_DEVICE_ARCH
Ubuntu Linux 16.04
sudo apt install cmake
sudo apt install nvidia-cuda-dev nvidia-cuda-toolkit nvidia-361
export TRICK_NVCC=YES
./buildnativeoperations.sh
./buildnativeoperations.sh -c cuda -сс YOUR_DEVICE_ARCH
The standard development headers are needed.
CentOS 6
yum install centos-release-scl-rh epel-release
yum install devtoolset-3-toolchain maven30 cmake3 git
scl enable devtoolset-3 maven30 bash
./buildnativeoperations.sh
./buildnativeoperations.sh -c cuda -сс YOUR_DEVICE_ARCH
Windows
See Windows.md
Setup for All OS
-
Set a LIBND4J_HOME as an environment variable to the libnd4j folder you've obtained from GIT
- Note: this is required for building nd4j as well.
-
Setup cpu followed by gpu, run the following on the command line:
-
For standard builds:
./buildnativeoperations.sh ./buildnativeoperations.sh -c cuda -сс YOUR_DEVICE_ARCH
-
For Debug builds:
./buildnativeoperations.sh blas -b debug ./buildnativeoperations.sh blas -c cuda -сс YOUR_DEVICE_ARCH -b debug
-
For release builds (default):
./buildnativeoperations.sh ./buildnativeoperations.sh -c cuda -сс YOUR_DEVICE_ARCH
-
OpenMP support
OpenMP 4.0+ should be used to compile libnd4j. However, this shouldn't be any trouble, since OpenMP 4 was released in 2015 and should be available on all major platforms.
Linking with MKL
We can link with MKL either at build time, or at runtime with binaries initially linked with another BLAS implementation such as OpenBLAS. In either case, simply add the path containing libmkl_rt.so
(or mkl_rt.dll
on Windows), say /path/to/intel64/lib/
, to the LD_LIBRARY_PATH
environment variable on Linux (or PATH
on Windows), and build or run your Java application as usual. If you get an error message like undefined symbol: omp_get_num_procs
, it probably means that libiomp5.so
, libiomp5.dylib
, or libiomp5md.dll
is not present on your system. In that case though, it is still possible to use the GNU version of OpenMP by setting these environment variables on Linux, for example:
export MKL_THREADING_LAYER=GNU
export LD_PRELOAD=/usr/lib64/libgomp.so.1
##Troubleshooting MKL
Sometimes the above steps might not be all you need to do. Another additional step might be the need to add:
export LD_LIBRARY_PATH=/opt/intel/lib/intel64/:/opt/intel/mkl/lib/intel64
This ensures that mkl will be found first and liked to.
Packaging
If on Ubuntu (14.04 or above) or CentOS (6 or above), this repository is also set to create packages for your distribution. Let's assume you have built:
- for the cpu, your command-line was
./buildnativeoperations.sh ...
:
cd blasbuild/cpu
make package
- for the gpu, your command-line was
./buildnativeoperations.sh -c cuda ...
:
cd blasbuild/cuda
make package
Uploading package to Bintray
The package upload script is in packaging. The upload command for an rpm built for cpu is:
./packages/push_to_bintray.sh myAPIUser myAPIKey deeplearning4j blasbuild/cpu/libnd4j-0.8.0.fc7.3.1611.x86_64.rpm https://github.com/deeplearning4j
The upload command for a deb package built for cuda is:
./packages/push_to_bintray.sh myAPIUser myAPIKey deeplearning4j blasbuild/cuda/libnd4j-0.8.0.fc7.3.1611.x86_64.deb https://github.com/deeplearning4j
Running tests
Tests are written with gtest, run using cmake. Tests are currently under tests_cpu/
There are 2 directories for running tests:
1. libnd4j_tests: These are older legacy ops tests.
2. layers_tests: This covers the newer graph operations and ops associated with samediff.
For running the tests, we currently use cmake or CLion to run the tests.
To run tests using CUDA backend it's pretty much similar process:
1. ./buildnativeoperations.h -c cuda -cc <YOUR_ARCH> -b debug -t -j <NUMBER_OF_CORES>
2. ./blasbuild/cuda/tests_cpu/layers_tests/runtests (.exe on Windows)