* initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * another initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * another initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * one more initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Refactored buffer() and shapeInfo() methods usage with NDArray class. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt Graph class methods to use const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt choose op to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt where op shape method to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt lstsq op to use constant empty shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt matrix_diag_part op shape routine to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt determinant ops to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt mean_pairwssqerr_loss ops to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt shape methods for loss ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt log_loss op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt shape methods for ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt dilation2d ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted deconv2d ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted dynamicRNN op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods for ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods for lstm layer ops. Signed-off-by: shugeo <sgazeos@gmail.com> * few updates Signed-off-by: raver119@gmail.com <raver119@gmail.com> * first cuda tweak Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Adopt constant shapes for sconv2d ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt constant shapes for gru ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt constant shapes with shape methods for segment ops and so on. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted constant shapes with unsorted_segment_* ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted constant shapes with gamma op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods of reduce_stddev ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods for reduce_* ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt shape method for squeeze op. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt strided_slice shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored concat op shape method to adopt constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape method for mirror_pad op. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted split op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted tile ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Added const cast for mkldnn routines handles. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored logSoftMaxForVector_ routine to conform with proper data and shape pointer casts. Signed-off-by: shugeo <sgazeos@gmail.com> * Cosmetic changes to proper usage of constant pointers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored a couple shape comparators for strides and addBias helpers to proper use data pointers with inplace option. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored depthToSpace helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored histogram helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored im2col helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored gather and gatherND helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage on percentile helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed gather shape with helpers and range buffer usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with space to depth helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage and constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with LUP decomposition> Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored onehot_ helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pad and prefix to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactoed softmax helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed space to batch helpers to use buffers properly. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed stack and split helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with sparse to dense helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with mindistance_ helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with tile helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed constant shape usage with legacy pairwise bool ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored a couple of methods to adopt constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed broadcasting with constant shape." Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const usage with inplace reverse and constant shapes with legacy reduction. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored legacy ops with const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored sort to adopt constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected sort for constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed constant shape usage with special methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored Context to conform with constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * CUDA broadcasting headers Signed-off-by: raver119@gmail.com <raver119@gmail.com> * pairwise/indexreduce/random headers Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Refactored native ops to adopt constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * legacy reduce3/scalar headers Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Corrected pullRow signature and tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected routines to proper use of constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored tests to use constant shapes properly. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored legacy ops tests to use constant shapes properly. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored buffer usage with NDArray tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed native ops tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed special concat routine. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with test. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with a test. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored TAD.h and tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored calcStrides* routines to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed miscelaneous errors with constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * NativeOps const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Corrected definitions for declared functions. Signed-off-by: shugeo <sgazeos@gmail.com> * NativeOps const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * few more const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed const shapes with shape routines. Signed-off-by: shugeo <sgazeos@gmail.com> * few more const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed shape method for broadcastable case. Signed-off-by: shugeo <sgazeos@gmail.com> * few more const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * xw_plus_b BP shape fn restored Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed signatures with broadcasting. Signed-off-by: shugeo <sgazeos@gmail.com> * Repaired backprops shape methods for a set of operations. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored broadcast bool for cuda. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored methods for 3 args with const qualifier. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed a couple of kernel signatures for broadcasting. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernels signatures for const buffers and shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pairwise methods to persistent buffers and shapes usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt const to buffers and shapes with kernels. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt const to buffers and shapes with scalar kernels. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored indexreduce kernels signatures to use const buffers and shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pairwise kernels to adopt cons shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pairwise bool kernels to adopt cons shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored random special ops to conform with const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored native ops to conform with const shapes and buffers under cuda platform. Signed-off-by: shugeo <sgazeos@gmail.com> * Cosmetical changes only. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shapes and buffers error. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected start pos routine. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored methods to conform with const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored helpers to use proper methods instead. Signed-off-by: shugeo <sgazeos@gmail.com> * bunch of changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next bunch of changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next bunch of changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed execScalar declaration. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed execScalar declaration. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected const shape cases with sort and so on. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shapes for sort. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored kernel declarations to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernels declarations to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected kernel declarations to adopt const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernels declarations to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed segment helpers kernels declarations and so on to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shape usage with segment and solve helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernel declaration with adjustWeight helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed cuda implementations for constant shape helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted const shape usage with kernels. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted top_k kernels to use const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected kernels declarations to adopt const shapes with helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored NDArray definitions to adopt const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shapes with image suppression helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Slight improvement with buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored buffer usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored buffer usage with tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shape usage with definitions. Signed-off-by: shugeo <sgazeos@gmail.com> * minor updates on cpu side Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Refactored const shape usage with ConstantDescritor and native ops with cuda platform. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored tear and tile kernels to adopt with const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * softmax_loop fix Signed-off-by: raver119 <raver119@gmail.com> * update missing signature Signed-off-by: raver119@gmail.com <raver119@gmail.com> * softmax again Signed-off-by: raver119@gmail.com <raver119@gmail.com> * few more missing consts Signed-off-by: raver119 <raver119@gmail.com> * new methods updated Signed-off-by: raver119@gmail.com <raver119@gmail.com> Co-authored-by: shugeo <sgazeos@gmail.com>
471 lines
30 KiB
Plaintext
471 lines
30 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2019 Konduit K.K.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Yurii Shyrma (iuriish@yahoo.com)
|
|
//
|
|
|
|
|
|
#include "cudnnUtils.h"
|
|
#include <ops/declarable/helpers/convolutions.h>
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
namespace platforms {
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
static void depthwiseConv2dCUDNN(const LaunchContext* context,
|
|
const NDArray* input, const NDArray* weights, const NDArray* bias, NDArray* output,
|
|
const int kH, const int kW,
|
|
const int sH, const int sW,
|
|
const int pH, const int pW,
|
|
const int dH, const int dW,
|
|
const int paddingMode, const bool isNCHW) {
|
|
|
|
// cudnn supports only following case: mC = 1, oC = iC (groupCount == iC)
|
|
|
|
// input [bS, iC, iH, iW] nchw or [bS, iH, iW, iC] nhwc
|
|
// weights [iC, mC, kH, kW]
|
|
// bias [oC], may be nullptr
|
|
// output [bS, oC, oH, oW] nchw or [bS, oH, oW, oC] nhwc
|
|
// oC = iC*mC
|
|
|
|
int bS, iC, iH, iW, mC, oC, oH, oW; // batch size, input channels, input height/width, output channels, output height/width;
|
|
int indIOioC, indIiH, indWmC, indWiC, indWkH, indOoH; // corresponding indexes
|
|
ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, 0, *input, *output, bS, iC, iH, iW, oC, oH, oW, indIOioC, indIiH, indWiC, indWmC, indWkH, indOoH);
|
|
mC = weights->sizeAt(1);
|
|
|
|
auto handle = reinterpret_cast<cudnnHandle_t *>(context->getCuDnnHandle());
|
|
cudnnStatus_t err = cudnnSetStream(*handle, *context->getCudaStream());
|
|
if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dCUDNN: can't set stream for cuDNN", err);
|
|
|
|
cudnnTensorFormat_t format = isNCHW ? CUDNN_TENSOR_NCHW : CUDNN_TENSOR_NHWC;
|
|
|
|
// input descriptor
|
|
cudnnTensorDescriptor_t x;
|
|
cudnnCreateTensorDescriptor(&x);
|
|
if(input->ews() == 1 && input->ordering() == 'c')
|
|
err = cudnnSetTensor4dDescriptor(x, format, cudnnDataType(input->dataType()), bS, iC, iH, iW);
|
|
else
|
|
err = cudnnSetTensor4dDescriptorEx(x, cudnnDataType(input->dataType()), bS, iC, iH, iW, input->strideAt(0), input->strideAt(indIOioC), input->strideAt(indIiH), input->strideAt(indIiH + 1));
|
|
if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dCUDNN: cudnnSetTensor4dDescriptor/cudnnSetTensor4dDescriptorEx for input failed", err);
|
|
|
|
// weights descriptor
|
|
cudnnFilterDescriptor_t w;
|
|
cudnnCreateFilterDescriptor(&w);
|
|
err = cudnnSetFilter4dDescriptor(w, cudnnDataType(weights->dataType()), CUDNN_TENSOR_NCHW, iC, mC, kH, kW);
|
|
if(err != 0) throw sd::cuda_exception::build("depthwiseConv2dCUDNN: cudnnSetFilter4dDescriptor failed", err);
|
|
|
|
// output descriptor
|
|
cudnnTensorDescriptor_t z;
|
|
cudnnCreateTensorDescriptor(&z);
|
|
if(output->ews() == 1 && output->ordering() == 'c')
|
|
err = cudnnSetTensor4dDescriptor(z, format, cudnnDataType(output->dataType()), bS, oC, oH, oW);
|
|
else
|
|
err = cudnnSetTensor4dDescriptorEx(z, cudnnDataType(output->dataType()), bS, oC, oH, oW, output->strideAt(0), output->strideAt(indIOioC), output->strideAt(indOoH), output->strideAt(indOoH + 1));
|
|
if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dCUDNN: cudnnSetTensor4dDescriptor/cudnnSetTensor4dDescriptorEx for output failed", err);
|
|
|
|
// description of convolution
|
|
cudnnConvolutionDescriptor_t conv;
|
|
cudnnCreateConvolutionDescriptor(&conv);
|
|
err = cudnnSetConvolution2dDescriptor(conv, pH, pW, sH, sW, dH, dW, CUDNN_CROSS_CORRELATION, cudnnDataType(output->dataType()));
|
|
if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dCUDNN: cudnnSetConvolution2dDescriptor failed", err);
|
|
err = cudnnSetConvolutionGroupCount(conv, iC); // set number of groups (depthwise mode) in description of convolution, groupCount == iC
|
|
if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dCUDNN: cudnnSetConvolutionGroupCount failed", err);
|
|
|
|
// algorithm description
|
|
cudnnConvolutionFwdAlgo_t algo;
|
|
err = cudnnGetConvolutionForwardAlgorithm(*handle, x, w, conv, z, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo);
|
|
if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dCUDNN: cudnnGetConvolutionForwardAlgorithm failed", err);
|
|
|
|
// allocate auxiliary device memory, abbreviation ws means workspace
|
|
size_t wsSize;
|
|
err = cudnnGetConvolutionForwardWorkspaceSize(*handle, x, w, conv, z, algo, &wsSize);
|
|
if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dCUDNN: cudnnGetConvolutionForwardWorkspaceSize failed", err);
|
|
void* wsData;
|
|
auto cudaErr = cudaMalloc(&wsData, wsSize);
|
|
if (cudaErr != 0) throw sd::cuda_exception::build("depthwiseConv2dCUDNN: cudaMalloc for auxiliary workspace memory failed", cudaErr);
|
|
|
|
// provide scaling parameters
|
|
const float alpha32(1), beta32(0);
|
|
const double alpha64(1), beta64(0);
|
|
const void* alpha = output->sizeOfT() <= 4 ? reinterpret_cast<const void*>(&alpha32) : reinterpret_cast<const void*>(&alpha64);
|
|
const void* beta = output->sizeOfT() <= 4 ? reinterpret_cast<const void*>(&beta32) : reinterpret_cast<const void*>(&beta64);
|
|
|
|
NDArray::prepareSpecialUse({output}, {input, weights, bias});
|
|
|
|
// run calculation
|
|
err = cudnnConvolutionForward(*handle, alpha, x, input->specialBuffer(), w, weights->specialBuffer(), conv, algo, wsData, wsSize, beta, z, output->specialBuffer());
|
|
if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dCUDNN: cudnnConvolutionForward failed", err);
|
|
|
|
// add bias if it is present
|
|
if (bias != nullptr) {
|
|
|
|
cudnnTensorDescriptor_t b;
|
|
cudnnCreateTensorDescriptor(&b);
|
|
// err = cudnnSetTensor4dDescriptor(b, format, cudnnDataType(bias->dataType()), 1, isNCHW ? bias->lengthOf() : 1, 1, isNCHW ? 1: bias->lengthOf());
|
|
err = cudnnSetTensor4dDescriptor(b, CUDNN_TENSOR_NCHW, cudnnDataType(bias->dataType()), 1, oC, 1, 1);
|
|
if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dCUDNN: cudnnSetTensor4dDescriptor for bias failed", err);
|
|
err = cudnnAddTensor(*handle, alpha, b, bias->specialBuffer(), alpha, z, output->specialBuffer());
|
|
if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dCUDNN: cudnnAddTensor bias failed", err);
|
|
}
|
|
|
|
// cudaErr = cudaStreamSynchronize(*context->getCudaStream());
|
|
// if (cudaErr != 0)
|
|
// throw cuda_exception::build("depthwiseConv2dCUDNN: cudaStreamSynchronize failed !", cudaErr);
|
|
|
|
cudaErr = cudaFree(wsData);
|
|
if (cudaErr != 0) throw sd::cuda_exception::build("depthwiseConv2dCUDNN: cudaFree for auxiliary workspace memory failed", cudaErr);
|
|
|
|
NDArray::registerSpecialUse({output}, {input, weights, bias});
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
static void depthwiseConv2dBpCUDNN(const LaunchContext* context,
|
|
const NDArray* input, const NDArray* weights, const NDArray* gradO,
|
|
NDArray* gradI, NDArray* gradW, NDArray* gradB,
|
|
const int kH, const int kW,
|
|
const int sH, const int sW,
|
|
const int pH, const int pW,
|
|
const int dH, const int dW,
|
|
const int paddingMode, const bool isNCHW) {
|
|
|
|
// cudnn supports only following case: mC = 1, oC = iC (groupCount == iC)
|
|
|
|
// input, gradI [bS, iC, iH, iW] nchw or [bS, iH, iW, iC] nhwc
|
|
// weights, gradW [iC, mC, kH, kW]
|
|
// gradB [oC], may be nullptr
|
|
// gradO [bS, oC, oH, oW] nchw or [bS, oH, oW, oC] nhwc
|
|
// oC = iC*mC
|
|
|
|
int bS, iC, iH, iW, mC, oC, oH, oW; // batch size, input channels, input height/width, output channels, output height/width;
|
|
int indIOioC, indIiH, indWmC, indWiC, indWkH, indOoH; // corresponding indexes
|
|
ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, 0, *input, *gradO, bS, iC, iH, iW, oC, oH, oW, indIOioC, indIiH, indWiC, indWmC, indWkH, indOoH);
|
|
mC = weights->sizeAt(1);
|
|
|
|
auto handle = reinterpret_cast<cudnnHandle_t *>(context->getCuDnnHandle());
|
|
cudnnStatus_t err = cudnnSetStream(*handle, *context->getCudaStream());
|
|
if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: can't set stream for cuDNN", err);
|
|
|
|
cudnnTensorFormat_t format = isNCHW ? CUDNN_TENSOR_NCHW : CUDNN_TENSOR_NHWC;
|
|
|
|
// input descriptor
|
|
cudnnTensorDescriptor_t x;
|
|
cudnnCreateTensorDescriptor(&x);
|
|
if(input->ews() == 1 && input->ordering() == 'c')
|
|
err = cudnnSetTensor4dDescriptor(x, format, cudnnDataType(input->dataType()), bS, iC, iH, iW);
|
|
else
|
|
err = cudnnSetTensor4dDescriptorEx(x, cudnnDataType(input->dataType()), bS, iC, iH, iW, input->strideAt(0), input->strideAt(indIOioC), input->strideAt(indIiH), input->strideAt(indIiH + 1));
|
|
if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: cudnnSetTensor4dDescriptor/cudnnSetTensor4dDescriptorEx for input failed", err);
|
|
|
|
// gradO descriptor
|
|
cudnnTensorDescriptor_t dz;
|
|
cudnnCreateTensorDescriptor(&dz);
|
|
if(gradO->ews() == 1 && gradO->ordering() == 'c')
|
|
err = cudnnSetTensor4dDescriptor(dz, format, cudnnDataType(gradO->dataType()), bS, oC, oH, oW);
|
|
else
|
|
err = cudnnSetTensor4dDescriptorEx(dz, cudnnDataType(gradO->dataType()), bS, oC, oH, oW, gradO->strideAt(0), gradO->strideAt(indIOioC), gradO->strideAt(indOoH), gradO->strideAt(indOoH + 1));
|
|
if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: cudnnSetTensor4dDescriptor/cudnnSetTensor4dDescriptorEx for gradO failed", err);
|
|
|
|
// gradI descriptor
|
|
cudnnTensorDescriptor_t dx;
|
|
cudnnCreateTensorDescriptor(&dx);
|
|
if(gradI->ews() == 1 && gradI->ordering() == 'c')
|
|
err = cudnnSetTensor4dDescriptor(dx, format, cudnnDataType(gradI->dataType()), bS, iC, iH, iW);
|
|
else
|
|
err = cudnnSetTensor4dDescriptorEx(dx, cudnnDataType(gradI->dataType()), bS, iC, iH, iW, gradI->strideAt(0), gradI->strideAt(indIOioC), gradI->strideAt(indIiH), gradI->strideAt(indIiH + 1));
|
|
if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: cudnnSetTensor4dDescriptor/cudnnSetTensor4dDescriptorEx for gradI failed", err);
|
|
|
|
// gradW descriptor
|
|
cudnnFilterDescriptor_t dw;
|
|
cudnnCreateFilterDescriptor(&dw);
|
|
err = cudnnSetFilter4dDescriptor(dw, cudnnDataType(gradW->dataType()), CUDNN_TENSOR_NCHW, iC, mC, kH, kW);
|
|
if(err != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: cudnnSetFilter4dDescriptor gradW failed", err);
|
|
|
|
// description of convolution
|
|
cudnnConvolutionDescriptor_t conv;
|
|
cudnnCreateConvolutionDescriptor(&conv);
|
|
err = cudnnSetConvolution2dDescriptor(conv, pH, pW, sH, sW, dH, dW, CUDNN_CROSS_CORRELATION, cudnnDataType(gradO->dataType()));
|
|
if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: cudnnSetConvolution2dDescriptor failed", err);
|
|
err = cudnnSetConvolutionGroupCount(conv, iC); // set number of groups (depthwise mode) in description of convolution, groupCount == iC
|
|
if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: cudnnSetConvolutionGroupCount failed", err);
|
|
|
|
// gradW algorithm description
|
|
cudnnConvolutionBwdFilterAlgo_t algoGradW;
|
|
err = cudnnGetConvolutionBackwardFilterAlgorithm(*handle, x, dz, conv, dw, CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST, 0, &algoGradW);
|
|
if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: cudnnGetConvolutionBackwardFilterAlgorithm failed", err);
|
|
|
|
// gradI algorithm description
|
|
cudnnConvolutionBwdDataAlgo_t algoGradI;
|
|
err = cudnnGetConvolutionBackwardDataAlgorithm(*handle, dw, dz, conv, x, CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST, 0, &algoGradI);
|
|
if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: cudnnGetConvolutionBackwardDataAlgorithm failed", err);
|
|
|
|
// allocate auxiliary device memory for gradW calculation, abbreviation ws means workspace
|
|
size_t wsGradWSize;
|
|
err = cudnnGetConvolutionBackwardFilterWorkspaceSize(*handle, x, dz, conv, dw, algoGradW, &wsGradWSize);
|
|
if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: cudnnGetConvolutionBackwardFilterWorkspaceSize failed", err);
|
|
void* wsGradWData;
|
|
auto cudaErr = cudaMalloc(&wsGradWData, wsGradWSize);
|
|
if (cudaErr != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: cudaMalloc for auxiliary workspace memory wsGradWData failed", cudaErr);
|
|
|
|
// allocate auxiliary device memory for gradI calculation, abbreviation ws means workspace
|
|
size_t wsGradISize;
|
|
err = cudnnGetConvolutionBackwardDataWorkspaceSize(*handle, dw, dz, conv, dx, algoGradI, &wsGradISize);
|
|
if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: cudnnGetConvolutionBackwardDataWorkspaceSize failed", err);
|
|
void* wsGradIData;
|
|
cudaErr = cudaMalloc(&wsGradIData, wsGradISize);
|
|
if (cudaErr != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: cudaMalloc for auxiliary workspace memory wsGradIData failed", cudaErr);
|
|
|
|
// provide scaling parameters
|
|
const float alpha32(1), beta32(0);
|
|
const double alpha64(1), beta64(0);
|
|
const void* alpha = gradO->sizeOfT() <= 4 ? reinterpret_cast<const void*>(&alpha32) : reinterpret_cast<const void*>(&alpha64);
|
|
const void* beta = gradO->sizeOfT() <= 4 ? reinterpret_cast<const void*>(&beta32) : reinterpret_cast<const void*>(&beta64);
|
|
|
|
NDArray::prepareSpecialUse({gradI, gradW, gradB}, {input, weights, gradO});
|
|
|
|
// run calculation for gradB (if not nullptr)
|
|
if(gradB != nullptr) {
|
|
cudnnTensorDescriptor_t db;
|
|
cudnnCreateTensorDescriptor(&db);
|
|
// err = cudnnSetTensor4dDescriptor(db, format, cudnnDataType(gradB->dataType()), 1, isNCHW ? gradB->lengthOf() : 1, 1, isNCHW ? 1: gradB->lengthOf());
|
|
err = cudnnSetTensor4dDescriptor(db, CUDNN_TENSOR_NCHW, cudnnDataType(gradB->dataType()), 1, oC, 1, 1);
|
|
if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: cudnnSetTensor4dDescriptor for gradB failed", err);
|
|
|
|
err = cudnnConvolutionBackwardBias(*handle, alpha, dz, gradO->specialBuffer(), beta, db, gradB->specialBuffer());
|
|
if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: cudnnConvolutionBackwardBias failed", err);
|
|
}
|
|
|
|
// run calculation for gradW
|
|
err = cudnnConvolutionBackwardFilter(*handle, alpha, x, input->specialBuffer(), dz, gradO->specialBuffer(), conv, algoGradW, wsGradWData, wsGradWSize, beta, dw, gradW->specialBuffer());
|
|
if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: cudnnConvolutionBackwardFilter failed", err);
|
|
|
|
// run calculation for gradI
|
|
err = cudnnConvolutionBackwardData(*handle, alpha, dw, weights->specialBuffer(), dz, gradO->specialBuffer(), conv, algoGradI, wsGradIData, wsGradISize, beta, dx, gradI->specialBuffer());
|
|
if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: cudnnConvolutionBackwardData failed", err);
|
|
|
|
// cudaErr = cudaStreamSynchronize(*context->getCudaStream());
|
|
// if (cudaErr != 0)
|
|
// throw cuda_exception::build("depthwiseConv2dBpCUDNN: cudaStreamSynchronize failed !", cudaErr);
|
|
|
|
cudaErr = cudaFree(wsGradWData);
|
|
if (cudaErr != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: cudaFree for auxiliary workspace memory wsGradWData failed", cudaErr);
|
|
cudaErr = cudaFree(wsGradIData);
|
|
if (cudaErr != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: cudaFree for auxiliary workspace memory wsGradIData failed", cudaErr);
|
|
|
|
NDArray::registerSpecialUse({gradI, gradW, gradB}, {input, weights, gradO});
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
PLATFORM_IMPL(depthwise_conv2d, ENGINE_CUDA) {
|
|
|
|
auto input = INPUT_VARIABLE(0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW)
|
|
auto weights = INPUT_VARIABLE(1); // [kH, kW, iC, mC], [mC, iC, kH, kW], [mC, kH, kW, iC]
|
|
auto bias = block.width() > 2 ? INPUT_VARIABLE(2) : nullptr; // [oC] = iC*mC
|
|
|
|
auto output = OUTPUT_VARIABLE(0); // [bS, oH, oW, iC*mC] (NHWC) or [bS, iC*mC, oH, oW] (NCHW)
|
|
|
|
REQUIRE_TRUE(input->rankOf() == 4, 0, "DEPTHWISECONV2D CUDNN OP: rank of input array must be equal to 4, but got %i instead !", input->rankOf());
|
|
REQUIRE_TRUE(weights->rankOf() == 4, 0, "DEPTHWISECONV2D CUDNN OP: rank of weights array must be equal to 4, but got %i instead !", weights->rankOf());
|
|
|
|
int kH = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast<int>(weights->sizeAt(0));// filter(kernel) height
|
|
int kW = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast<int>(weights->sizeAt(1));// filter(kernel) width
|
|
int sH = INT_ARG(2); // strides height
|
|
int sW = INT_ARG(3); // strides width
|
|
int pH = INT_ARG(4); // paddings height
|
|
int pW = INT_ARG(5); // paddings width
|
|
int dH = INT_ARG(6); // dilations height
|
|
int dW = INT_ARG(7); // dilations width
|
|
int paddingMode = INT_ARG(8); // 0-VALID, 1-SAME
|
|
int isNCHW = block.getIArguments()->size() > 9 ? !INT_ARG(9) : 1; // INT_ARG(9): 0-NCHW, 1-NHWC
|
|
int wFormat = block.getIArguments()->size() > 10 ? INT_ARG(10) : 0; // 0 - [kH, kW, iC, mC], 1 - [mC, iC, kH, kW], 2 - [mC, kH, kW, iC]
|
|
|
|
int bS, iC, iH, iW, mC, oC, oH, oW; // batch size, input channels, input height/width, channels multiplier(oC = iC*mC), output channels, output height/width
|
|
int indIOioC, indIiH, indWmC, indWiC, indWkH, indOoH; // corresponding indexes
|
|
ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, wFormat, *input, *output, bS, iC, iH, iW, oC, oH, oW, indIOioC, indIiH, indWiC, indWmC, indWkH, indOoH);
|
|
mC = weights->sizeAt(indWmC); // channels multiplier
|
|
|
|
ConvolutionUtils::calcPadding2D(pH, pW, oH, oW, iH, iW, kH, kW, sH, sW, dH, dW, paddingMode);
|
|
|
|
std::vector<Nd4jLong> expectedWeightsShape = ConvolutionUtils::expectWeightsShape(wFormat, kH, kW, iC, mC);
|
|
REQUIRE_TRUE(weights->isSameShape(expectedWeightsShape), 0, "DEPTHWISECONV2D CUDNN OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weights).c_str());
|
|
REQUIRE_TRUE(output->sizeAt(indIOioC) == iC*mC, 0, "DEPTHWISECONV2D CUDNN OP: the output_channels must be equal to input_channels * channels_multiplier = %i !", iC*mC);
|
|
if (bias)
|
|
REQUIRE_TRUE(bias->rankOf() <= 2 && oC == bias->lengthOf(), 0, "DEPTHWISECONV2D CUDNN OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, bias->rankOf(), bias->lengthOf());
|
|
|
|
std::vector<int> wPermut; // cudnn support format {oC, iC/groupCount, kH, kW} only, mC = 1, oC = iC (groupCount == iC) that is {iC, mC, kH, kW} in our case
|
|
if(0 == wFormat)
|
|
wPermut = {2,3,0,1}; // kH, kW, iC, mC -> iC, mC, kH, kW
|
|
else if(1 == wFormat)
|
|
wPermut = {1,0,2,3}; // mC, iC, kH, kW -> iC, mC, kH, kW
|
|
else
|
|
wPermut = {3,0,1,2}; // mC, kH, kW, iC -> iC, mC, kH, kW
|
|
|
|
NDArray* newWeights = new NDArray(weights->ordering(), {iC, mC, kH, kW}, weights->dataType(), weights->getContext());
|
|
newWeights->assign(weights->permute(wPermut));
|
|
|
|
NDArray* newInput = input;
|
|
NDArray* newGradI = nullptr;
|
|
if(paddingMode == 1) // in same paddingMode cudnn doesn't support asymmetric left/right top/bottopm paddings
|
|
checkConv2dCUDNNPadAsymmetric(newInput, newGradI, iH, iW, oH, oW, kH, kW, sH, sW, pH, pW, dH, dW, isNCHW);
|
|
|
|
depthwiseConv2dCUDNN(block.launchContext(), newInput, newWeights, bias, output, kH,kW,sH,sW,pH,pW,dH,dW, paddingMode, isNCHW);
|
|
|
|
if(newInput != input)
|
|
delete newInput;
|
|
|
|
delete newWeights;
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
PLATFORM_CHECK(depthwise_conv2d, ENGINE_CUDA) {
|
|
|
|
auto input = INPUT_VARIABLE(0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW)
|
|
auto weights = INPUT_VARIABLE(1); // [kH, kW, iC, mC], [mC, iC, kH, kW], [mC, kH, kW, iC]
|
|
auto bias = block.width() > 2 ? INPUT_VARIABLE(2) : nullptr; // [oC] = iC*mC
|
|
|
|
const int paddingMode = INT_ARG(8); // 0-VALID, 1-SAME, 2-CAUSAL
|
|
const int wFormat = block.getIArguments()->size() > 10 ? INT_ARG(10) : 0; // 0 - [kH, kW, iC, mC], 1 - [mC, iC, kH, kW], 2 - [mC, kH, kW, iC]
|
|
|
|
const int mC = weights->sizeAt(0 == wFormat ? 3 : 0);
|
|
|
|
const bool badInputType = input->dataType() != DataType::DOUBLE && input->dataType() != DataType::FLOAT32 && input->dataType() != DataType::HALF;
|
|
const bool badWeightsType = weights->dataType() != DataType::DOUBLE && weights->dataType() != DataType::FLOAT32 && weights->dataType() != DataType::HALF;
|
|
const bool badBiasType = bias == nullptr ? false : (bias->dataType() != DataType::DOUBLE && bias->dataType() != DataType::FLOAT32 && bias->dataType() != DataType::HALF);
|
|
|
|
return mC == 1 && paddingMode != 2 && !badInputType && !badWeightsType && !badBiasType;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
PLATFORM_IMPL(depthwise_conv2d_bp, ENGINE_CUDA) {
|
|
|
|
auto input = INPUT_VARIABLE(0); // [bS, iH, iW, iC] (NDHWC) or [bS, iC, iH, iW] (NCDHW)
|
|
auto weights = INPUT_VARIABLE(1); // [kH, kW, iC, mC], [mC, iC, kH, kW], [mC, kH, kW, iC]
|
|
auto bias = block.width() > 3 ? INPUT_VARIABLE(2) : nullptr; // [oC] = [iC*mC]
|
|
auto gradO = block.width() > 3 ? INPUT_VARIABLE(3) : INPUT_VARIABLE(2); // [bS, oH, oW, oC] (NDHWC) or [bS, oC, oH, oW] (NCDHW), epsilon_next
|
|
|
|
auto gradI = OUTPUT_VARIABLE(0); // [bS, iH, iW, iC] (NDHWC) or [bS, iC, iH, iW] (NCDHW), epsilon
|
|
auto gradW = OUTPUT_VARIABLE(1); // [kH, kW, iC, mC], [mC, iC, kH, kW], [mC, kH, kW, iC]
|
|
auto gradB = block.width() > 3 ? OUTPUT_VARIABLE(2) : nullptr; // [oC]
|
|
|
|
REQUIRE_TRUE(input->rankOf() == 4, 0, "DEPTHWISECONV2D_BP CUDNN OP: rank of input array must be equal to 4, but got %i instead !", input->rankOf());
|
|
REQUIRE_TRUE(weights->rankOf() == 4, 0, "DEPTHWISECONV2D_BP CUDNN OP: rank of weights array must be equal to 4, but got %i instead !", weights->rankOf());
|
|
REQUIRE_TRUE(gradO->rankOf() == 4, 0, "DEPTHWISECONV2D_BP CUDNN OP: rank of output gradients (next epsilon) array must be equal to 4, but got %i instead !", gradO->rankOf());
|
|
|
|
int kH = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast<int>(weights->sizeAt(0));// filter(kernel) height
|
|
int kW = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast<int>(weights->sizeAt(1));// filter(kernel) width
|
|
int sH = INT_ARG(2); // strides height
|
|
int sW = INT_ARG(3); // strides width
|
|
int pH = INT_ARG(4); // paddings height
|
|
int pW = INT_ARG(5); // paddings width
|
|
int dH = INT_ARG(6); // dilations height
|
|
int dW = INT_ARG(7); // dilations width
|
|
int paddingMode = INT_ARG(8); // 0-VALID, 1-SAME
|
|
int isNCHW = block.getIArguments()->size() > 9 ? !INT_ARG(9) : 1; // INT_ARG(9): 1-NHWC, 0-NCHW
|
|
int wFormat = block.getIArguments()->size() > 10 ? INT_ARG(10) : 0; // 0 - [kH, kW, iC, mC], 1 - [mC, iC, kH, kW], 2 - [mC, kH, kW, iC]
|
|
|
|
int bS, iC, iH, iW, mC, oC, oH, oW; // batch size, input channels, input height/width, channels multiplier(oC = iC*mC), output channels, output height/width
|
|
int indIOioC, indIiH, indWmC, indWiC, indWkH, indOoH; // corresponding indexes
|
|
ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, wFormat, *input, *gradO, bS, iC, iH, iW, oC, oH, oW, indIOioC, indIiH, indWiC, indWmC, indWkH, indOoH);
|
|
mC = weights->sizeAt(indWmC); // channels multiplier
|
|
|
|
int trueoH, trueoW; // correct output height, width
|
|
ConvolutionUtils::calcOutSizePool2D(trueoH, trueoW, kH, kW, sH, sW, pH, pW, dH, dW, iH, iW, paddingMode);
|
|
|
|
ConvolutionUtils::calcPadding2D(pH, pW, oH, oW, iH, iW, kH, kW, sH, sW, dH, dW, paddingMode);
|
|
|
|
std::vector<Nd4jLong> expectedGradOShape = ShapeUtils::composeShapeUsingDimsAndIdx({bS,oC,trueoH,trueoW, 0,indIOioC,indOoH,indOoH+1});
|
|
std::vector<Nd4jLong> expectedWeightsShape = ConvolutionUtils::expectWeightsShape(wFormat, kH, kW, iC, mC);
|
|
REQUIRE_TRUE(gradO->isSameShape(expectedGradOShape), 0, "DEPTHWISECONV2D_BP CUDNN OP: wrong shape of output gradients (next epsilon) array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedGradOShape).c_str(), ShapeUtils::shapeAsString(gradO).c_str());
|
|
REQUIRE_TRUE(weights->isSameShape(expectedWeightsShape), 0, "DEPTHWISECONV2D_BP CUDNN OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weights).c_str());
|
|
if(bias)
|
|
REQUIRE_TRUE(bias->rankOf() <= 2 && oC == bias->lengthOf(), 0, "DEPTHWISECONV2D_BP CUDNN OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, bias->rankOf(), bias->lengthOf());
|
|
|
|
std::vector<int> wPermut, gradWPermut; // cudnn support format {oC, iC/groupCount, kH, kW} only, mC = 1, oC = iC (groupCount == iC) that is {iC, mC, kH, kW}
|
|
if(0 == wFormat) {
|
|
wPermut = {2,3,0,1}; // kH, kW, iC, mC -> iC, mC, kH, kW
|
|
gradWPermut = {2,3,0,1}; // iC, mC, kH, kW -> kH, kW, iC, mC
|
|
}
|
|
else if(1 == wFormat) {
|
|
wPermut = {1,0,2,3}; // mC, iC, kH, kW -> iC, mC, kH, kW
|
|
gradWPermut = {1,0,2,3}; // iC, mC, kH, kW -> mC, iC, kH, kW
|
|
}
|
|
else {
|
|
wPermut = {3,0,1,2}; // mC, kH, kW, iC -> iC, mC, kH, kW
|
|
gradWPermut = {1,2,3,0}; // iC, mC, kH, kW -> mC, kH, kW, iC
|
|
}
|
|
|
|
NDArray* newGradW = new NDArray(gradW->ordering(), {iC, mC, kH, kW}, gradW->dataType(), gradW->getContext());
|
|
NDArray* newWeights = new NDArray(weights->ordering(), {iC, mC, kH, kW}, weights->dataType(), weights->getContext());
|
|
|
|
newWeights->assign(weights->permute(wPermut));
|
|
|
|
NDArray* newInput = input;
|
|
NDArray* newGradI = gradI;
|
|
if(paddingMode == 1) // in same paddingMode cudnn doesn't support asymmetric left/right top/bottopm paddings
|
|
checkConv2dCUDNNPadAsymmetric(newInput, newGradI, iH, iW, oH, oW, kH, kW, sH, sW, pH, pW, dH, dW, isNCHW);
|
|
|
|
depthwiseConv2dBpCUDNN(block.launchContext(), newInput, newWeights, gradO, newGradI, newGradW, gradB, kH,kW,sH,sW,pH,pW,dH,dW,paddingMode,isNCHW);
|
|
|
|
newGradW->permutei(gradWPermut);
|
|
gradW->assign(newGradW);
|
|
|
|
if(newInput != input) {
|
|
|
|
if(isNCHW)
|
|
gradI->assign((*newGradI)({0,0, 0,0, 0,gradI->sizeAt(2), 0,gradI->sizeAt(3)}));
|
|
else
|
|
gradI->assign((*newGradI)({0,0, 0,gradI->sizeAt(1), 0,gradI->sizeAt(2), 0,0}));
|
|
|
|
delete newInput;
|
|
delete newGradI;
|
|
}
|
|
|
|
delete newWeights;
|
|
delete newGradW;
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
PLATFORM_CHECK(depthwise_conv2d_bp, ENGINE_CUDA) {
|
|
|
|
auto input = INPUT_VARIABLE(0); // [bS, iH, iW, iC] (NDHWC) or [bS, iC, iH, iW] (NCDHW)
|
|
auto weights = INPUT_VARIABLE(1); // [kH, kW, iC, mC], [mC, iC, kH, kW], [mC, kH, kW, iC]
|
|
auto bias = block.width() > 3 ? INPUT_VARIABLE(2) : nullptr; // [oC] = [iC*mC]
|
|
auto gradO = block.width() > 3 ? INPUT_VARIABLE(3) : INPUT_VARIABLE(2); // [bS, oH, oW, oC] (NDHWC) or [bS, oC, oH, oW] (NCDHW), epsilon_next
|
|
|
|
const int paddingMode = INT_ARG(8); // 0-VALID, 1-SAME, 2-CAUSAL
|
|
const int isNCHW = block.getIArguments()->size() > 9 ? !INT_ARG(9) : 1; // INT_ARG(9): 0-NCHW, 1-NHWC
|
|
const int wFormat = block.getIArguments()->size() > 10 ? INT_ARG(10) : 0; // 0 - [kH, kW, iC, mC], 1 - [mC, iC, kH, kW], 2 - [mC, kH, kW, iC]
|
|
|
|
const int mC = weights->sizeAt(0 == wFormat ? 3 : 0);
|
|
|
|
const bool badInputType = input->dataType() != DataType::DOUBLE && input->dataType() != DataType::FLOAT32 && input->dataType() != DataType::HALF;
|
|
const bool badWeightsType = weights->dataType() != DataType::DOUBLE && weights->dataType() != DataType::FLOAT32 && weights->dataType() != DataType::HALF;
|
|
const bool badGradOType = gradO->dataType() != DataType::DOUBLE && gradO->dataType() != DataType::FLOAT32 && gradO->dataType() != DataType::HALF;
|
|
const bool badBiasType = bias == nullptr ? false : (bias->dataType() != DataType::DOUBLE && bias->dataType() != DataType::FLOAT32 && bias->dataType() != DataType::HALF);
|
|
|
|
return mC == 1 && isNCHW && paddingMode != 2 && !badInputType && !badWeightsType && !badGradOType && !badBiasType;
|
|
}
|
|
|
|
|
|
}
|
|
}
|
|
}
|