* initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * another initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * another initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * one more initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Refactored buffer() and shapeInfo() methods usage with NDArray class. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt Graph class methods to use const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt choose op to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt where op shape method to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt lstsq op to use constant empty shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt matrix_diag_part op shape routine to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt determinant ops to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt mean_pairwssqerr_loss ops to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt shape methods for loss ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt log_loss op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt shape methods for ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt dilation2d ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted deconv2d ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted dynamicRNN op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods for ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods for lstm layer ops. Signed-off-by: shugeo <sgazeos@gmail.com> * few updates Signed-off-by: raver119@gmail.com <raver119@gmail.com> * first cuda tweak Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Adopt constant shapes for sconv2d ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt constant shapes for gru ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt constant shapes with shape methods for segment ops and so on. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted constant shapes with unsorted_segment_* ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted constant shapes with gamma op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods of reduce_stddev ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods for reduce_* ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt shape method for squeeze op. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt strided_slice shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored concat op shape method to adopt constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape method for mirror_pad op. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted split op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted tile ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Added const cast for mkldnn routines handles. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored logSoftMaxForVector_ routine to conform with proper data and shape pointer casts. Signed-off-by: shugeo <sgazeos@gmail.com> * Cosmetic changes to proper usage of constant pointers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored a couple shape comparators for strides and addBias helpers to proper use data pointers with inplace option. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored depthToSpace helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored histogram helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored im2col helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored gather and gatherND helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage on percentile helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed gather shape with helpers and range buffer usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with space to depth helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage and constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with LUP decomposition> Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored onehot_ helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pad and prefix to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactoed softmax helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed space to batch helpers to use buffers properly. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed stack and split helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with sparse to dense helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with mindistance_ helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with tile helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed constant shape usage with legacy pairwise bool ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored a couple of methods to adopt constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed broadcasting with constant shape." Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const usage with inplace reverse and constant shapes with legacy reduction. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored legacy ops with const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored sort to adopt constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected sort for constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed constant shape usage with special methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored Context to conform with constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * CUDA broadcasting headers Signed-off-by: raver119@gmail.com <raver119@gmail.com> * pairwise/indexreduce/random headers Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Refactored native ops to adopt constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * legacy reduce3/scalar headers Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Corrected pullRow signature and tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected routines to proper use of constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored tests to use constant shapes properly. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored legacy ops tests to use constant shapes properly. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored buffer usage with NDArray tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed native ops tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed special concat routine. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with test. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with a test. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored TAD.h and tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored calcStrides* routines to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed miscelaneous errors with constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * NativeOps const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Corrected definitions for declared functions. Signed-off-by: shugeo <sgazeos@gmail.com> * NativeOps const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * few more const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed const shapes with shape routines. Signed-off-by: shugeo <sgazeos@gmail.com> * few more const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed shape method for broadcastable case. Signed-off-by: shugeo <sgazeos@gmail.com> * few more const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * xw_plus_b BP shape fn restored Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed signatures with broadcasting. Signed-off-by: shugeo <sgazeos@gmail.com> * Repaired backprops shape methods for a set of operations. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored broadcast bool for cuda. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored methods for 3 args with const qualifier. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed a couple of kernel signatures for broadcasting. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernels signatures for const buffers and shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pairwise methods to persistent buffers and shapes usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt const to buffers and shapes with kernels. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt const to buffers and shapes with scalar kernels. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored indexreduce kernels signatures to use const buffers and shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pairwise kernels to adopt cons shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pairwise bool kernels to adopt cons shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored random special ops to conform with const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored native ops to conform with const shapes and buffers under cuda platform. Signed-off-by: shugeo <sgazeos@gmail.com> * Cosmetical changes only. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shapes and buffers error. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected start pos routine. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored methods to conform with const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored helpers to use proper methods instead. Signed-off-by: shugeo <sgazeos@gmail.com> * bunch of changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next bunch of changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next bunch of changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed execScalar declaration. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed execScalar declaration. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected const shape cases with sort and so on. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shapes for sort. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored kernel declarations to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernels declarations to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected kernel declarations to adopt const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernels declarations to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed segment helpers kernels declarations and so on to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shape usage with segment and solve helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernel declaration with adjustWeight helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed cuda implementations for constant shape helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted const shape usage with kernels. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted top_k kernels to use const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected kernels declarations to adopt const shapes with helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored NDArray definitions to adopt const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shapes with image suppression helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Slight improvement with buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored buffer usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored buffer usage with tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shape usage with definitions. Signed-off-by: shugeo <sgazeos@gmail.com> * minor updates on cpu side Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Refactored const shape usage with ConstantDescritor and native ops with cuda platform. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored tear and tile kernels to adopt with const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * softmax_loop fix Signed-off-by: raver119 <raver119@gmail.com> * update missing signature Signed-off-by: raver119@gmail.com <raver119@gmail.com> * softmax again Signed-off-by: raver119@gmail.com <raver119@gmail.com> * few more missing consts Signed-off-by: raver119 <raver119@gmail.com> * new methods updated Signed-off-by: raver119@gmail.com <raver119@gmail.com> Co-authored-by: shugeo <sgazeos@gmail.com>
413 lines
21 KiB
Plaintext
413 lines
21 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2019 Konduit K.K.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Yurii Shyrma (iuriish@yahoo.com)
|
|
//
|
|
|
|
|
|
#include "cudnnUtils.h"
|
|
#include <ops/declarable/helpers/convolutions.h>
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
namespace platforms {
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
void checkConv2dCUDNNPadAsymmetric(NDArray* &input, NDArray* &gradI,
|
|
const int iH, const int iW,
|
|
const int oH, const int oW,
|
|
const int kH, const int kW,
|
|
const int sH, const int sW,
|
|
const int pH, const int pW,
|
|
const int dH, const int dW,
|
|
const bool isNCHW) {
|
|
|
|
const auto pHsum = ((oH - 1) * sH + ((kH - 1) * dH + 1) - iH);
|
|
const auto pWsum = ((oW - 1) * sW + ((kW - 1) * dW + 1) - iW);
|
|
|
|
const bool isPHasymm = pH != (pHsum - pH);
|
|
const bool isPWasymm = pW != (pWsum - pW);
|
|
|
|
if(!isPHasymm && !isPWasymm)
|
|
return;
|
|
|
|
std::vector<Nd4jLong> newShape = input->getShapeAsVector();
|
|
|
|
const int iHposition = isNCHW ? 2 : 1;
|
|
|
|
if(isPHasymm)
|
|
newShape[iHposition] += 1;
|
|
if(isPWasymm)
|
|
newShape[iHposition + 1] += 1;
|
|
|
|
NDArray* newInput = new NDArray(input->ordering(), newShape, input->dataType(), input->getContext());
|
|
|
|
if(isNCHW)
|
|
(*newInput)({0,0, 0,0, 0,input->sizeAt(2), 0,input->sizeAt(3)}).assign(input);
|
|
else
|
|
(*newInput)({0,0, 0,input->sizeAt(1), 0,input->sizeAt(2), 0,0}).assign(input);
|
|
|
|
input = newInput;
|
|
|
|
if(gradI != nullptr)
|
|
gradI = new NDArray(gradI->ordering(), newShape, gradI->dataType(), gradI->getContext());
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
void checkConv3dCUDNNPadAsymmetric(NDArray* &input, NDArray* &gradI,
|
|
const int iD, const int iH, const int iW,
|
|
const int oD, const int oH, const int oW,
|
|
const int kD, const int kH, const int kW,
|
|
const int sD, const int sH, const int sW,
|
|
const int pD, const int pH, const int pW,
|
|
const int dD, const int dH, const int dW,
|
|
const bool isNCDHW) {
|
|
|
|
const auto pDsum = ((oD - 1) * sD + ((kD - 1) * dD + 1) - iD);
|
|
const auto pHsum = ((oH - 1) * sH + ((kH - 1) * dH + 1) - iH);
|
|
const auto pWsum = ((oW - 1) * sW + ((kW - 1) * dW + 1) - iW);
|
|
|
|
const bool isPDasymm = pD != (pDsum - pD);
|
|
const bool isPHasymm = pH != (pHsum - pH);
|
|
const bool isPWasymm = pW != (pWsum - pW);
|
|
|
|
if(!isPDasymm && !isPHasymm && !isPWasymm)
|
|
return;
|
|
|
|
std::vector<Nd4jLong> newShape = input->getShapeAsVector();
|
|
|
|
const int iDposition = isNCDHW ? 2 : 1;
|
|
|
|
if(isPDasymm)
|
|
newShape[iDposition] += 1;
|
|
if(isPHasymm)
|
|
newShape[iDposition + 1] += 1;
|
|
if(isPWasymm)
|
|
newShape[iDposition + 2] += 1;
|
|
|
|
NDArray* newInput = new NDArray(input->ordering(), newShape, input->dataType(), input->getContext());
|
|
|
|
if(isNCDHW)
|
|
(*newInput)({0,0, 0,0, 0,input->sizeAt(2), 0,input->sizeAt(3), 0,input->sizeAt(4)}).assign(input);
|
|
else
|
|
(*newInput)({0,0, 0,input->sizeAt(1), 0,input->sizeAt(2), 0,input->sizeAt(3), 0,0}).assign(input);
|
|
|
|
input = newInput;
|
|
|
|
if(gradI != nullptr)
|
|
gradI = new NDArray(gradI->ordering(), newShape, gradI->dataType(), gradI->getContext());
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
void pooling2dCUDNN(const LaunchContext* context,
|
|
const NDArray* input, NDArray* output,
|
|
const int kH, const int kW,
|
|
const int sH, const int sW,
|
|
const int pH, const int pW,
|
|
const int dH, const int dW,
|
|
const bool isNCHW, const cudnnPoolingMode_t mode) {
|
|
|
|
int bS, iC, iH, iW, oC, oH, oW; // batch size, input channels, input height/width, output channels, output height/width;
|
|
int indIOioC, indIiH, indWoC, indWiC, indWkH, indOoH; // corresponding indexes
|
|
ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, 0, *input, *output, bS, iC, iH, iW, oC, oH, oW, indIOioC, indIiH, indWiC, indWoC, indWkH, indOoH);
|
|
|
|
auto handle = reinterpret_cast<cudnnHandle_t *>(context->getCuDnnHandle());
|
|
cudnnStatus_t err = cudnnSetStream(*handle, *context->getCudaStream());
|
|
if (err != 0) throw sd::cuda_exception::build("pooling2dCUDNN: can't set stream for cuDNN", err);
|
|
|
|
cudnnTensorFormat_t format = isNCHW ? CUDNN_TENSOR_NCHW : CUDNN_TENSOR_NHWC;
|
|
|
|
// input descriptor
|
|
cudnnTensorDescriptor_t x;
|
|
cudnnCreateTensorDescriptor(&x);
|
|
if(input->ews() == 1 && input->ordering() == 'c')
|
|
err = cudnnSetTensor4dDescriptor(x, format, cudnnDataType(input->dataType()), bS, iC, iH, iW);
|
|
else
|
|
err = cudnnSetTensor4dDescriptorEx(x, cudnnDataType(input->dataType()), bS, iC, iH, iW, input->strideAt(0), input->strideAt(indIOioC), input->strideAt(indIiH), input->strideAt(indIiH + 1));
|
|
if (err != 0) throw sd::cuda_exception::build("pooling2dCUDNN: cudnnSetTensor4dDescriptor/cudnnSetTensor4dDescriptorEx for input failed", err);
|
|
|
|
// output descriptor
|
|
cudnnTensorDescriptor_t z;
|
|
cudnnCreateTensorDescriptor(&z);
|
|
if(output->ews() == 1 && output->ordering() == 'c')
|
|
err = cudnnSetTensor4dDescriptor(z, format, cudnnDataType(output->dataType()), bS, oC, oH, oW);
|
|
else
|
|
err = cudnnSetTensor4dDescriptorEx(z, cudnnDataType(output->dataType()), bS, oC, oH, oW, output->strideAt(0), output->strideAt(indIOioC), output->strideAt(indOoH), output->strideAt(indOoH + 1));
|
|
if (err != 0) throw sd::cuda_exception::build("pooling2dCUDNN: cudnnSetTensor4dDescriptor/cudnnSetTensor4dDescriptorEx for output failed", err);
|
|
|
|
// description of pooling
|
|
cudnnPoolingDescriptor_t pooling;
|
|
cudnnCreatePoolingDescriptor(&pooling);
|
|
err = cudnnSetPooling2dDescriptor(pooling, mode, CUDNN_PROPAGATE_NAN, kH, kW, pH, pW, sH, sW);
|
|
if (err != 0) throw sd::cuda_exception::build("pooling2dCUDNN: cudnnSetPooling2dDescriptor failed", err);
|
|
|
|
// provide scaling parameters
|
|
const float alpha32(1), beta32(0);
|
|
const double alpha64(1), beta64(0);
|
|
const void* alpha = output->sizeOfT() <= 4 ? reinterpret_cast<const void*>(&alpha32) : reinterpret_cast<const void*>(&alpha64);
|
|
const void* beta = output->sizeOfT() <= 4 ? reinterpret_cast<const void*>(&beta32) : reinterpret_cast<const void*>(&beta64);
|
|
|
|
NDArray::prepareSpecialUse({output}, {input});
|
|
|
|
// run calculation
|
|
err = cudnnPoolingForward(*handle, pooling, alpha, x, input->specialBuffer(), beta, z, output->specialBuffer());
|
|
if (err != 0) throw sd::cuda_exception::build("pooling2dCUDNN: cudnnPoolingForward failed", err);
|
|
|
|
auto cudaErr = cudaStreamSynchronize(*context->getCudaStream());
|
|
if (cudaErr != 0)
|
|
throw cuda_exception::build("pooling2dCUDNN: cudaStreamSynchronize failed !", cudaErr);
|
|
|
|
NDArray::registerSpecialUse({output}, {input});
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
void pooling2dBpCUDNN(const LaunchContext* context,
|
|
const NDArray* input, const NDArray* gradO,
|
|
NDArray* gradI,
|
|
const int kH, const int kW,
|
|
const int sH, const int sW,
|
|
const int pH, const int pW,
|
|
const int dH, const int dW,
|
|
const bool isNCHW, const cudnnPoolingMode_t mode) {
|
|
|
|
int bS, iC, iH, iW, oC, oH, oW; // batch size, input channels, input height/width, output channels, output height/width;
|
|
int indIOioC, indIiH, indWoC, indWiC, indWkH, indOoH; // corresponding indexes
|
|
ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, 0, *input, *gradO, bS, iC, iH, iW, oC, oH, oW, indIOioC, indIiH, indWiC, indWoC, indWkH, indOoH);
|
|
|
|
auto handle = reinterpret_cast<cudnnHandle_t *>(context->getCuDnnHandle());
|
|
cudnnStatus_t err = cudnnSetStream(*handle, *context->getCudaStream());
|
|
if (err != 0) throw sd::cuda_exception::build("pooling2dBpCUDNN: can't set stream for cuDNN", err);
|
|
|
|
cudnnTensorFormat_t format = isNCHW ? CUDNN_TENSOR_NCHW : CUDNN_TENSOR_NHWC;
|
|
|
|
// input and gradI descriptor
|
|
cudnnTensorDescriptor_t x;
|
|
cudnnCreateTensorDescriptor(&x);
|
|
if(input->ews() == 1 && input->ordering() == 'c')
|
|
err = cudnnSetTensor4dDescriptor(x, format, cudnnDataType(input->dataType()), bS, iC, iH, iW);
|
|
else
|
|
err = cudnnSetTensor4dDescriptorEx(x, cudnnDataType(input->dataType()), bS, iC, iH, iW, input->strideAt(0), input->strideAt(indIOioC), input->strideAt(indIiH), input->strideAt(indIiH + 1));
|
|
if (err != 0) throw sd::cuda_exception::build("pooling2dBpCUDNN: cudnnSetTensor4dDescriptor/cudnnSetTensor4dDescriptorEx for input/gradI failed", err);
|
|
|
|
// gradO descriptor
|
|
cudnnTensorDescriptor_t dz;
|
|
cudnnCreateTensorDescriptor(&dz);
|
|
if(gradO->ews() == 1 && gradO->ordering() == 'c')
|
|
err = cudnnSetTensor4dDescriptor(dz, format, cudnnDataType(gradO->dataType()), bS, oC, oH, oW);
|
|
else
|
|
err = cudnnSetTensor4dDescriptorEx(dz, cudnnDataType(gradO->dataType()), bS, oC, oH, oW, gradO->strideAt(0), gradO->strideAt(indIOioC), gradO->strideAt(indOoH), gradO->strideAt(indOoH + 1));
|
|
if (err != 0) throw sd::cuda_exception::build("pooling2dBpCUDNN: cudnnSetTensor4dDescriptor/cudnnSetTensor4dDescriptorEx for gradO failed", err);
|
|
|
|
// description of pooling
|
|
cudnnPoolingDescriptor_t pooling;
|
|
cudnnCreatePoolingDescriptor(&pooling);
|
|
err = cudnnSetPooling2dDescriptor(pooling, mode, CUDNN_PROPAGATE_NAN, kH, kW, pH, pW, sH, sW);
|
|
if (err != 0) throw sd::cuda_exception::build("pooling2dBpCUDNN: cudnnSetPooling2dDescriptor failed", err);
|
|
|
|
// provide scaling parameters
|
|
const float alpha32(1), beta32(0);
|
|
const double alpha64(1), beta64(0);
|
|
const void* alpha = gradO->sizeOfT() <= 4 ? reinterpret_cast<const void*>(&alpha32) : reinterpret_cast<const void*>(&alpha64);
|
|
const void* beta = gradO->sizeOfT() <= 4 ? reinterpret_cast<const void*>(&beta32) : reinterpret_cast<const void*>(&beta64);
|
|
|
|
NDArray::prepareSpecialUse({gradI}, {input, gradO});
|
|
|
|
// run calculation for gradI
|
|
err = cudnnPoolingBackward(*handle, pooling, alpha, dz, gradO->specialBuffer(), dz, gradO->specialBuffer(), x, input->specialBuffer(), beta, x, gradI->specialBuffer());
|
|
if (err != 0) throw sd::cuda_exception::build("pooling2dBpCUDNN: cudnnPoolingBackward failed", err);
|
|
|
|
auto cudaErr = cudaStreamSynchronize(*context->getCudaStream());
|
|
if (cudaErr != 0)
|
|
throw cuda_exception::build("pooling2dBpCUDNN: cudaStreamSynchronize failed !", cudaErr);
|
|
|
|
NDArray::registerSpecialUse({gradI}, {input, gradO});
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
void pooling3dCUDNN(const LaunchContext* context,
|
|
const NDArray* input, NDArray* output,
|
|
const int kD, const int kH, const int kW,
|
|
const int sD, const int sH, const int sW,
|
|
const int pD, const int pH, const int pW,
|
|
const int dD, const int dH, const int dW,
|
|
const bool isNCDHW, const cudnnPoolingMode_t mode) {
|
|
|
|
auto handle = reinterpret_cast<cudnnHandle_t *>(context->getCuDnnHandle());
|
|
cudnnStatus_t err = cudnnSetStream(*handle, *context->getCudaStream());
|
|
if (err != 0) throw sd::cuda_exception::build("pooling3dCUDNN: can't set stream for cuDNN", err);
|
|
|
|
const int numDims = 5;
|
|
|
|
int bS, iC, iD, iH, iW, oC, oD, oH, oW; // batch size, input channels, input depth/height/width, output channels, output depth/height/width;
|
|
int indIOioC, indIOioD, indWoC, indWiC, indWkD; // corresponding indexes
|
|
ConvolutionUtils::getSizesAndIndexesConv3d(isNCDHW, 0, *input, *output, bS, iC, iD, iH, iW, oC, oD, oH, oW, indIOioC, indIOioD, indWiC, indWoC, indWkD);
|
|
|
|
const int pSizes[] = {pD, pH, pW};
|
|
const int sSizes[] = {sD, sH, sW};
|
|
const int kSizes[] = {kD, kH, kW};
|
|
|
|
const int xShape[] = {bS, iC, iD, iH, iW};
|
|
const int zShape[] = {bS, oC, oD, oH, oW};
|
|
|
|
const int xStrides[] = {(int)input->strideAt(0), (int)input->strideAt(1), (int)input->strideAt(2), (int)input->strideAt(3), (int)input->strideAt(4)};
|
|
const int zStrides[] = {(int)output->strideAt(0), (int)output->strideAt(1), (int)output->strideAt(2), (int)output->strideAt(3), (int)output->strideAt(4)};
|
|
|
|
cudnnTensorFormat_t format = isNCDHW ? CUDNN_TENSOR_NCHW : CUDNN_TENSOR_NHWC;
|
|
|
|
// input descriptor
|
|
cudnnTensorDescriptor_t x;
|
|
cudnnCreateTensorDescriptor(&x);
|
|
if(input->ews() == 1 && input->ordering() == 'c')
|
|
err = cudnnSetTensorNdDescriptorEx(x, format, cudnnDataType(input->dataType()), numDims, xShape);
|
|
else
|
|
err = cudnnSetTensorNdDescriptor(x, cudnnDataType(input->dataType()), numDims, xShape, xStrides);
|
|
if (err != 0) throw sd::cuda_exception::build("pooling3dCUDNN: cudnnSetTensorNdDescriptor/cudnnSetTensorNdDescriptorEx for input failed", err);
|
|
|
|
// output descriptor
|
|
cudnnTensorDescriptor_t z;
|
|
cudnnCreateTensorDescriptor(&z);
|
|
if(output->ews() == 1 && output->ordering() == 'c')
|
|
err = cudnnSetTensorNdDescriptorEx(z, format, cudnnDataType(output->dataType()), numDims, zShape);
|
|
else
|
|
err = cudnnSetTensorNdDescriptor(z, cudnnDataType(output->dataType()), numDims, zShape, zStrides);
|
|
if (err != 0) throw sd::cuda_exception::build("pooling3dCUDNN: cudnnSetTensorNdDescriptor/cudnnSetTensorNdDescriptorEx for output failed", err);
|
|
|
|
// description of pooling
|
|
cudnnPoolingDescriptor_t pooling;
|
|
cudnnCreatePoolingDescriptor(&pooling);
|
|
err = cudnnSetPoolingNdDescriptor(pooling, mode, CUDNN_PROPAGATE_NAN, numDims - 2, kSizes, pSizes, sSizes);
|
|
if (err != 0) throw sd::cuda_exception::build("pooling3dCUDNN: cudnnSetPoolingNdDescriptor failed", err);
|
|
|
|
// provide scaling parameters
|
|
const float alpha32(1), beta32(0);
|
|
const double alpha64(1), beta64(0);
|
|
const void* alpha = output->sizeOfT() <= 4 ? reinterpret_cast<const void*>(&alpha32) : reinterpret_cast<const void*>(&alpha64);
|
|
const void* beta = output->sizeOfT() <= 4 ? reinterpret_cast<const void*>(&beta32) : reinterpret_cast<const void*>(&beta64);
|
|
|
|
NDArray::prepareSpecialUse({output}, {input});
|
|
|
|
// run calculation
|
|
err = cudnnPoolingForward(*handle, pooling, alpha, x, input->specialBuffer(), beta, z, output->specialBuffer());
|
|
if (err != 0) throw sd::cuda_exception::build("pooling3dCUDNN: cudnnPoolingForward failed", err);
|
|
|
|
auto cudaErr = cudaStreamSynchronize(*context->getCudaStream());
|
|
if (cudaErr != 0)
|
|
throw cuda_exception::build("pooling3dCUDNN: cudaStreamSynchronize failed !", cudaErr);
|
|
|
|
NDArray::registerSpecialUse({output}, {input});
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
void pooling3dBpCUDNN(const LaunchContext* context,
|
|
const NDArray* input, const NDArray* gradO,
|
|
NDArray* gradI,
|
|
const int kD, const int kH, const int kW,
|
|
const int sD, const int sH, const int sW,
|
|
const int pD, const int pH, const int pW,
|
|
const int dD, const int dH, const int dW,
|
|
const bool isNCDHW, const cudnnPoolingMode_t mode) {
|
|
|
|
auto handle = reinterpret_cast<cudnnHandle_t *>(context->getCuDnnHandle());
|
|
cudnnStatus_t err = cudnnSetStream(*handle, *context->getCudaStream());
|
|
if (err != 0) throw sd::cuda_exception::build("pooling3dBpCUDNN: can't set stream for cuDNN", err);
|
|
|
|
const int numDims = 5;
|
|
|
|
int bS, iC, iD, iH, iW, oC, oD, oH, oW; // batch size, input channels, input depth/height/width, output channels, output depth/height/width;
|
|
int indIOioC, indIOioD, indWoC, indWiC, indWkD; // corresponding indexes
|
|
ConvolutionUtils::getSizesAndIndexesConv3d(isNCDHW, 0, *input, *gradO, bS, iC, iD, iH, iW, oC, oD, oH, oW, indIOioC, indIOioD, indWiC, indWoC, indWkD);
|
|
|
|
const int pSizes[] = {pD, pH, pW};
|
|
const int sSizes[] = {sD, sH, sW};
|
|
const int kSizes[] = {kD, kH, kW};
|
|
|
|
const int xShape[] = {bS, iC, iD, iH, iW};
|
|
const int dzShape[] = {bS, oC, oD, oH, oW};
|
|
|
|
const int xStrides[] = {(int)input->strideAt(0), (int)input->strideAt(1), (int)input->strideAt(2), (int)input->strideAt(3), (int)input->strideAt(4)};
|
|
const int dzStrides[] = {(int)gradO->strideAt(0), (int)gradO->strideAt(1), (int)gradO->strideAt(2), (int)gradO->strideAt(3), (int)gradO->strideAt(4)};
|
|
|
|
cudnnTensorFormat_t format = isNCDHW ? CUDNN_TENSOR_NCHW : CUDNN_TENSOR_NHWC;
|
|
|
|
// input and gradI descriptor
|
|
cudnnTensorDescriptor_t x;
|
|
cudnnCreateTensorDescriptor(&x);
|
|
if(input->ews() == 1 && input->ordering() == 'c')
|
|
err = cudnnSetTensorNdDescriptorEx(x, format, cudnnDataType(input->dataType()), numDims, xShape);
|
|
else
|
|
err = cudnnSetTensorNdDescriptor(x, cudnnDataType(input->dataType()), numDims, xShape, xStrides);
|
|
if (err != 0) throw sd::cuda_exception::build("pooling3dBpCUDNN: cudnnSetTensorNdDescriptor/cudnnSetTensorNdDescriptorEx for input/gradI failed", err);
|
|
|
|
// gradO descriptor
|
|
cudnnTensorDescriptor_t dz;
|
|
cudnnCreateTensorDescriptor(&dz);
|
|
if(gradO->ews() == 1 && gradO->ordering() == 'c')
|
|
err = cudnnSetTensorNdDescriptorEx(dz, format, cudnnDataType(gradO->dataType()), numDims, dzShape);
|
|
else
|
|
err = cudnnSetTensorNdDescriptor(dz, cudnnDataType(gradO->dataType()), numDims, dzShape, dzStrides);
|
|
if (err != 0) throw sd::cuda_exception::build("pooling3dBpCUDNN: cudnnSetTensorNdDescriptor/cudnnSetTensorNdDescriptorEx for gradO failed", err);
|
|
|
|
// description of pooling
|
|
cudnnPoolingDescriptor_t pooling;
|
|
cudnnCreatePoolingDescriptor(&pooling);
|
|
err = cudnnSetPoolingNdDescriptor(pooling, mode, CUDNN_PROPAGATE_NAN, numDims - 2, kSizes, pSizes, sSizes);
|
|
if (err != 0) throw sd::cuda_exception::build("pooling3dBpCUDNN: cudnnSetPoolingNdDescriptor failed", err);
|
|
|
|
// provide scaling parameters
|
|
const float alpha32(1), beta32(0);
|
|
const double alpha64(1), beta64(0);
|
|
const void* alpha = gradO->sizeOfT() <= 4 ? reinterpret_cast<const void*>(&alpha32) : reinterpret_cast<const void*>(&alpha64);
|
|
const void* beta = gradO->sizeOfT() <= 4 ? reinterpret_cast<const void*>(&beta32) : reinterpret_cast<const void*>(&beta64);
|
|
|
|
// cudnn maxpool2d_bp api requires ff output as one of input arguments
|
|
if(mode == CUDNN_POOLING_MAX) {
|
|
|
|
NDArray temp(gradO);
|
|
|
|
NDArray::prepareSpecialUse({gradI}, {input, gradO, &temp});
|
|
|
|
// run ff calculation
|
|
err = cudnnPoolingForward(*handle, pooling, alpha, x, input->specialBuffer(), beta, dz, temp.specialBuffer());
|
|
if (err != 0) throw sd::cuda_exception::build("pooling3dCUDNN: cudnnPoolingForward failed", err);
|
|
|
|
// run bp calculation for gradI
|
|
err = cudnnPoolingBackward(*handle, pooling, alpha, dz, temp.specialBuffer(), dz, gradO->specialBuffer(), x, input->specialBuffer(), beta, x, gradI->specialBuffer());
|
|
if (err != 0) throw sd::cuda_exception::build("pooling2dBpCUDNN: cudnnPoolingBackward failed", err);
|
|
|
|
NDArray::registerSpecialUse({gradI}, {input, gradO, &temp});
|
|
}
|
|
else {
|
|
|
|
NDArray::prepareSpecialUse({gradI}, {input, gradO});
|
|
|
|
// run bp calculation for gradI
|
|
err = cudnnPoolingBackward(*handle, pooling, alpha, dz, gradO->specialBuffer(), dz, gradO->specialBuffer(), x, input->specialBuffer(), beta, x, gradI->specialBuffer());
|
|
if (err != 0) throw sd::cuda_exception::build("pooling2dBpCUDNN: cudnnPoolingBackward failed", err);
|
|
|
|
NDArray::registerSpecialUse({gradI}, {input, gradO});
|
|
}
|
|
|
|
auto cudaErr = cudaStreamSynchronize(*context->getCudaStream());
|
|
if (cudaErr != 0)
|
|
throw cuda_exception::build("pooling3dBpCUDNN: cudaStreamSynchronize failed !", cudaErr);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|