* initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * another initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * another initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * one more initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Refactored buffer() and shapeInfo() methods usage with NDArray class. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt Graph class methods to use const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt choose op to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt where op shape method to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt lstsq op to use constant empty shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt matrix_diag_part op shape routine to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt determinant ops to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt mean_pairwssqerr_loss ops to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt shape methods for loss ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt log_loss op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt shape methods for ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt dilation2d ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted deconv2d ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted dynamicRNN op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods for ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods for lstm layer ops. Signed-off-by: shugeo <sgazeos@gmail.com> * few updates Signed-off-by: raver119@gmail.com <raver119@gmail.com> * first cuda tweak Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Adopt constant shapes for sconv2d ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt constant shapes for gru ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt constant shapes with shape methods for segment ops and so on. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted constant shapes with unsorted_segment_* ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted constant shapes with gamma op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods of reduce_stddev ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods for reduce_* ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt shape method for squeeze op. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt strided_slice shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored concat op shape method to adopt constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape method for mirror_pad op. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted split op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted tile ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Added const cast for mkldnn routines handles. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored logSoftMaxForVector_ routine to conform with proper data and shape pointer casts. Signed-off-by: shugeo <sgazeos@gmail.com> * Cosmetic changes to proper usage of constant pointers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored a couple shape comparators for strides and addBias helpers to proper use data pointers with inplace option. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored depthToSpace helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored histogram helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored im2col helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored gather and gatherND helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage on percentile helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed gather shape with helpers and range buffer usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with space to depth helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage and constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with LUP decomposition> Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored onehot_ helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pad and prefix to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactoed softmax helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed space to batch helpers to use buffers properly. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed stack and split helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with sparse to dense helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with mindistance_ helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with tile helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed constant shape usage with legacy pairwise bool ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored a couple of methods to adopt constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed broadcasting with constant shape." Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const usage with inplace reverse and constant shapes with legacy reduction. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored legacy ops with const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored sort to adopt constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected sort for constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed constant shape usage with special methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored Context to conform with constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * CUDA broadcasting headers Signed-off-by: raver119@gmail.com <raver119@gmail.com> * pairwise/indexreduce/random headers Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Refactored native ops to adopt constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * legacy reduce3/scalar headers Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Corrected pullRow signature and tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected routines to proper use of constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored tests to use constant shapes properly. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored legacy ops tests to use constant shapes properly. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored buffer usage with NDArray tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed native ops tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed special concat routine. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with test. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with a test. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored TAD.h and tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored calcStrides* routines to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed miscelaneous errors with constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * NativeOps const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Corrected definitions for declared functions. Signed-off-by: shugeo <sgazeos@gmail.com> * NativeOps const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * few more const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed const shapes with shape routines. Signed-off-by: shugeo <sgazeos@gmail.com> * few more const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed shape method for broadcastable case. Signed-off-by: shugeo <sgazeos@gmail.com> * few more const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * xw_plus_b BP shape fn restored Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed signatures with broadcasting. Signed-off-by: shugeo <sgazeos@gmail.com> * Repaired backprops shape methods for a set of operations. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored broadcast bool for cuda. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored methods for 3 args with const qualifier. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed a couple of kernel signatures for broadcasting. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernels signatures for const buffers and shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pairwise methods to persistent buffers and shapes usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt const to buffers and shapes with kernels. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt const to buffers and shapes with scalar kernels. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored indexreduce kernels signatures to use const buffers and shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pairwise kernels to adopt cons shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pairwise bool kernels to adopt cons shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored random special ops to conform with const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored native ops to conform with const shapes and buffers under cuda platform. Signed-off-by: shugeo <sgazeos@gmail.com> * Cosmetical changes only. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shapes and buffers error. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected start pos routine. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored methods to conform with const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored helpers to use proper methods instead. Signed-off-by: shugeo <sgazeos@gmail.com> * bunch of changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next bunch of changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next bunch of changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed execScalar declaration. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed execScalar declaration. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected const shape cases with sort and so on. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shapes for sort. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored kernel declarations to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernels declarations to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected kernel declarations to adopt const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernels declarations to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed segment helpers kernels declarations and so on to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shape usage with segment and solve helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernel declaration with adjustWeight helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed cuda implementations for constant shape helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted const shape usage with kernels. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted top_k kernels to use const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected kernels declarations to adopt const shapes with helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored NDArray definitions to adopt const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shapes with image suppression helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Slight improvement with buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored buffer usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored buffer usage with tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shape usage with definitions. Signed-off-by: shugeo <sgazeos@gmail.com> * minor updates on cpu side Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Refactored const shape usage with ConstantDescritor and native ops with cuda platform. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored tear and tile kernels to adopt with const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * softmax_loop fix Signed-off-by: raver119 <raver119@gmail.com> * update missing signature Signed-off-by: raver119@gmail.com <raver119@gmail.com> * softmax again Signed-off-by: raver119@gmail.com <raver119@gmail.com> * few more missing consts Signed-off-by: raver119 <raver119@gmail.com> * new methods updated Signed-off-by: raver119@gmail.com <raver119@gmail.com> Co-authored-by: shugeo <sgazeos@gmail.com>
428 lines
24 KiB
Plaintext
428 lines
24 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author GS <sgazeos@gmail.com>
|
|
//
|
|
|
|
#include <ops/declarable/helpers/segment.h>
|
|
#include <ops/declarable/helpers/segment_common.h>
|
|
#include <array/NDArrayFactory.h>
|
|
#include <helpers/ShapeUtils.h>
|
|
#include <helpers/TAD.h>
|
|
#include <exceptions/cuda_exception.h>
|
|
#include <helpers/PointersManager.h>
|
|
#include <helpers/ConstantTadHelper.h>
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
namespace helpers {
|
|
// -------------------------------------------------------------------------------------------------------------- //
|
|
// Segment ops linear kernels
|
|
// -------------------------------------------------------------------------------------------------------------- //
|
|
|
|
template<typename T, typename I>
|
|
static __global__ void
|
|
segmentMinLinearKernel(const void *input, const Nd4jLong *inputShape, int *starts, int *lengths, Nd4jLong numOfClasses,
|
|
void *output, const Nd4jLong *outputShape) {
|
|
__shared__ T *val;
|
|
__shared__ Nd4jLong xLen, zLen, zIndex;
|
|
__shared__ const T *x;
|
|
__shared__ T *z;
|
|
__shared__ int threadsPerSegment, start, finish;
|
|
|
|
auto segment = blockIdx.x;
|
|
if (threadIdx.x == 0) {
|
|
// threadsPerSegment = (gridDim.x + numOfClasses - 1) / numOfClasses;
|
|
// segment = blockIdx.x / threadsPerSegment;
|
|
x = reinterpret_cast<const T *>(input);
|
|
z = reinterpret_cast<T *>(output);
|
|
extern __shared__ unsigned char shmem[];
|
|
val = reinterpret_cast<T *>(shmem);
|
|
xLen = shape::length(inputShape);
|
|
zLen = shape::length(outputShape);
|
|
|
|
if (segment < numOfClasses) {
|
|
zIndex = shape::getIndexOffset(segment, outputShape);
|
|
start = starts[segment];
|
|
finish = start + lengths[segment];
|
|
z[zIndex] = x[shape::getIndexOffset(start, inputShape)];
|
|
val[segment] = z[zIndex];
|
|
}
|
|
|
|
}
|
|
__syncthreads();
|
|
|
|
for (auto e = start + threadIdx.x + 1; e < finish; e += blockDim.x) {
|
|
auto xIndex = shape::getIndexOffset(e, inputShape);
|
|
sd::math::atomics::nd4j_atomicMin(&z[zIndex], x[xIndex]);
|
|
}
|
|
|
|
}
|
|
// -------------------------------------------------------------------------------------------------------------- //
|
|
|
|
template<typename T, typename I>
|
|
static __global__ void
|
|
unsortedSegmentMinLinearKernel(const void *input, const Nd4jLong *inputShape, const void *indices, const Nd4jLong *indicesShape,
|
|
int *starts, int *lengths, Nd4jLong numOfClasses, void *output,
|
|
const Nd4jLong *outputShape) {
|
|
__shared__
|
|
T *val;
|
|
__shared__
|
|
Nd4jLong xLen, zLen, segment, zIndex;
|
|
__shared__
|
|
const T *x;
|
|
__shared__
|
|
T *z;
|
|
__shared__
|
|
const I *y; //int threadsPerSegment, start, finish;
|
|
|
|
if (threadIdx.x == 0) {
|
|
segment = blockIdx.x;
|
|
x = reinterpret_cast<const T *>(input);
|
|
z = reinterpret_cast<T *>(output);
|
|
y = reinterpret_cast<const I *>(indices);
|
|
xLen = shape::length(inputShape);
|
|
zLen = shape::length(outputShape);
|
|
|
|
zIndex = shape::getIndexOffset(segment, outputShape);
|
|
if (lengths[segment] > 0)
|
|
z[zIndex] = x[shape::getIndexOffset(starts[segment], inputShape)];
|
|
else
|
|
z[zIndex] = DataTypeUtils::max<T>();
|
|
|
|
}
|
|
__syncthreads();
|
|
|
|
if (lengths[segment] > 0)
|
|
for (auto e = threadIdx.x + 1; e < xLen; e += blockDim.x) {
|
|
auto xIndex = shape::getIndexOffset(e, inputShape);
|
|
auto yIndex = shape::getIndexOffset(e, indicesShape);
|
|
if (y[yIndex] == segment) {
|
|
sd::math::atomics::nd4j_atomicMin(&z[zIndex], x[xIndex]);
|
|
}
|
|
}
|
|
}
|
|
// -------------------------------------------------------------------------------------------------------------- //
|
|
// SegmentMin kernel
|
|
template <typename T, typename I>
|
|
static __global__ void segmentMinTadKernel(const void* inputBuf, const Nd4jLong* inputShape, const Nd4jLong* inputTads, const Nd4jLong* inputTadOffsets, I* indices, int* starts, int* lengths, Nd4jLong numOfClasses, void* outputBuf, const Nd4jLong* outputShape, const Nd4jLong* outputTads, const Nd4jLong* outputTadOffsets) {
|
|
__shared__ T* val;
|
|
__shared__ Nd4jLong len, zIndex, total;
|
|
__shared__ T* z;
|
|
__shared__ int threadsPerSegment, start, finish;
|
|
|
|
auto segment = indices[blockIdx.x]; // / threadsPerSegment;
|
|
if (threadIdx.x == 0) {
|
|
z = reinterpret_cast<T*>(outputBuf) + outputTadOffsets[segment];
|
|
len = shape::length(inputTads);
|
|
start = starts[segment];
|
|
finish = start + lengths[segment];
|
|
total = shape::sizeAt(inputShape, 0);
|
|
|
|
}
|
|
__syncthreads();
|
|
|
|
auto idx = blockIdx.x;
|
|
if (blockIdx.x <= total) {
|
|
auto x = reinterpret_cast<const T *>(inputBuf) + inputTadOffsets[idx];
|
|
if (blockIdx.x == start) {
|
|
for (auto e = threadIdx.x; e < len; e += blockDim.x) {
|
|
auto xIndex = shape::getIndexOffset(e, inputTads);
|
|
auto zIndex = shape::getIndexOffset(e, outputTads);
|
|
sd::math::atomics::nd4j_atomicMin(&z[zIndex], x[xIndex]);
|
|
}
|
|
}
|
|
else {
|
|
for (auto e = threadIdx.x; e < len; e += blockDim.x) {
|
|
auto xIndex = shape::getIndexOffset(e, inputTads);
|
|
auto zIndex = shape::getIndexOffset(e, outputTads);
|
|
// if (lengths[indices[idx]])
|
|
sd::math::atomics::nd4j_atomicMin(&z[zIndex], x[xIndex]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// -------------------------------------------------------------------------------------------------------------- //
|
|
// segmen min
|
|
template <typename T, typename I>
|
|
static void segmentMinFunctor_(LaunchContext* context, NDArray* input, NDArray* indices, NDArray* output) {
|
|
auto stream = context->getCudaStream();
|
|
Nd4jLong numClasses = indices->e<Nd4jLong>(indices->lengthOf() - 1) + 1;
|
|
auto classesRangesLens = NDArrayFactory::create<int>('c', {numClasses}, context);
|
|
auto classesRangesBegs = NDArrayFactory::create<int>('c', {numClasses}, context);
|
|
output->assign(DataTypeUtils::infOrMax<T>());
|
|
classesRangesBegs.assign(indices->lengthOf());
|
|
classesRangesLens.assign(0);
|
|
|
|
fillUpSegments(indices, numClasses, classesRangesBegs, classesRangesLens);
|
|
NDArray::prepareSpecialUse({output}, {input, indices, &classesRangesBegs, &classesRangesLens});
|
|
int* begins = reinterpret_cast<int*>(classesRangesBegs.specialBuffer());
|
|
int* lengths = reinterpret_cast<int*>(classesRangesLens.specialBuffer());
|
|
if (input->isVector()) {
|
|
segmentMinLinearKernel<T,I><<<numClasses, input->lengthOf(), numClasses * 32 + 32, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), begins, lengths, numClasses, output->specialBuffer(), output->specialShapeInfo());
|
|
}
|
|
else {
|
|
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
|
|
auto packX = sd::ConstantTadHelper::getInstance()->tadForDimensions(input->shapeInfo(), dimensions);
|
|
auto packZ = sd::ConstantTadHelper::getInstance()->tadForDimensions(output->shapeInfo(), dimensions);
|
|
auto inputTads = packX.specialShapeInfo();
|
|
auto inputTadOffsets = packX.specialOffsets();
|
|
auto outputTads = packZ.specialShapeInfo();
|
|
auto outputTadOffsets = packZ.specialOffsets();
|
|
segmentMinTadKernel<T,I><<<input->sizeAt(0), 512, 2048, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), inputTads, inputTadOffsets, reinterpret_cast<I*>(indices->specialBuffer()), begins, lengths, numClasses, output->specialBuffer(), output->specialShapeInfo(), outputTads, outputTadOffsets);
|
|
|
|
}
|
|
NDArray::registerSpecialUse({output}, {input, indices, &classesRangesBegs, &classesRangesLens});
|
|
|
|
}
|
|
// -------------------------------------------------------------------------------------------------------------- //
|
|
void segmentMinFunctor(sd::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* output) {
|
|
NDArray::prepareSpecialUse({output}, {input, indices});
|
|
output->nullify();
|
|
BUILD_DOUBLE_SELECTOR(input->dataType(), indices->dataType(), segmentMinFunctor_, (context, input, indices, output), NUMERIC_TYPES, INDEXING_TYPES);
|
|
NDArray::registerSpecialUse({output}, {input, indices});
|
|
}
|
|
|
|
// -------------------------------------------------------------------------------------------------------------- //
|
|
|
|
template <typename T, typename I>
|
|
static void unsortedSegmentMinFunctor_(sd::LaunchContext* context, NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
|
|
auto stream = context->getCudaStream();
|
|
// NDArray classes = NDArrayFactory::create<int>('c', {numOfClasses, 2});
|
|
NDArray classesRangesBegs = NDArrayFactory::create<int>('c', {numOfClasses}, context);
|
|
NDArray classesRangesLens = NDArrayFactory::create<int>('c', {numOfClasses}, context);
|
|
// NDArray row = NDArrayFactory::create<int>('c', {1, 2}, {(int)indices->lengthOf(), (int)0});
|
|
// classes.applyTrueBroadcast(sd::BroadcastOpsTuple::Assign(), &row, &classes);
|
|
output->assign(DataTypeUtils::infOrMax<T>());
|
|
classesRangesBegs.assign(indices->lengthOf());
|
|
classesRangesLens.assign(0);
|
|
dim3 dims(numOfClasses, indices->lengthOf(), numOfClasses * 32 + 32);
|
|
// int* classesBuf = reinterpret_cast<int*>(classes.specialBuffer());
|
|
fillUpSegments(indices, numOfClasses, classesRangesBegs, classesRangesLens);
|
|
int* begins = reinterpret_cast<int*>(classesRangesBegs.specialBuffer());
|
|
int* lengths = reinterpret_cast<int*>(classesRangesLens.specialBuffer());
|
|
NDArray::prepareSpecialUse({output}, {input, indices});
|
|
if (input->isVector()) {
|
|
unsortedSegmentMinLinearKernel<T,I><<<dims.x, dims.y, dims.z, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), indices->specialBuffer(), indices->specialShapeInfo(), begins, lengths, numOfClasses, output->specialBuffer(), output->specialShapeInfo());
|
|
}
|
|
else {
|
|
output->assign(DataTypeUtils::max<T>());
|
|
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
|
|
auto packX = sd::ConstantTadHelper::getInstance()->tadForDimensions(input->shapeInfo(), dimensions);
|
|
auto packZ = sd::ConstantTadHelper::getInstance()->tadForDimensions(output->shapeInfo(), dimensions);
|
|
auto inputTads = packX.specialShapeInfo();
|
|
auto inputTadOffsets = packX.specialOffsets();
|
|
auto outputTads = packZ.specialShapeInfo();
|
|
auto outputTadOffsets = packZ.specialOffsets();
|
|
dims.x = input->sizeAt(0);
|
|
segmentMinTadKernel<T,I><<<dims.x, dims.y, dims.z, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), inputTads, inputTadOffsets, reinterpret_cast<I*>(indices->specialBuffer()), begins, lengths, numOfClasses, output->specialBuffer(), output->specialShapeInfo(), outputTads, outputTadOffsets);
|
|
}
|
|
NDArray::registerSpecialUse({output}, {input, indices});
|
|
|
|
}
|
|
// -------------------------------------------------------------------------------------------------------------- //
|
|
void unsortedSegmentMinFunctor(sd::LaunchContext* context , NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) {
|
|
NDArray::prepareSpecialUse({output}, {input, indices});
|
|
output->nullify();
|
|
BUILD_DOUBLE_SELECTOR(input->dataType(), indices->dataType(), unsortedSegmentMinFunctor_, (context, input, indices, numOfClasses, output),
|
|
NUMERIC_TYPES, INDEXING_TYPES);
|
|
NDArray::registerSpecialUse({output}, {input, indices});
|
|
}
|
|
|
|
template <typename T, typename I>
|
|
static __global__ void segmentMinBPLinearKernel(const void* inputBuf, const Nd4jLong* inputShape, void* forwardOutput,
|
|
const Nd4jLong* forwardShape, void* eps, const Nd4jLong* epsShape, const void* indicesBuf, const Nd4jLong* indicesShape,
|
|
void* outputBuf, const Nd4jLong* outputShape) {
|
|
__shared__ const T* x;
|
|
__shared__ T* gradIn;
|
|
__shared__ T* gradOut;
|
|
__shared__ const I* y;
|
|
__shared__ T* z;
|
|
__shared__ Nd4jLong xLen, gradLen;
|
|
|
|
if (threadIdx.x == 0) {
|
|
xLen = shape::length(inputShape);
|
|
x = reinterpret_cast<const T*>(inputBuf);
|
|
y = reinterpret_cast<const I*>(indicesBuf);
|
|
z = reinterpret_cast<T*>(outputBuf);
|
|
gradIn = reinterpret_cast<T*>(forwardOutput);
|
|
gradOut = reinterpret_cast<T*>(eps);
|
|
gradLen = shape::length(epsShape);
|
|
}
|
|
__syncthreads();
|
|
|
|
auto start = blockIdx.x * blockDim.x + threadIdx.x;
|
|
auto step = gridDim.x * blockDim.x;
|
|
|
|
for (auto e = start; e < xLen; e += step) {
|
|
|
|
auto zOffset = shape::getIndexOffset(e, outputShape);
|
|
auto xOffset = shape::getIndexOffset(e, inputShape);
|
|
auto yOffset = shape::getIndexOffset(e, indicesShape);
|
|
auto classIndex = y[yOffset];
|
|
auto gradOffsetI = shape::getIndexOffset(classIndex, forwardShape);
|
|
auto gradOffsetO = shape::getIndexOffset(classIndex, epsShape);
|
|
|
|
if (sd::math::nd4j_abs(gradIn[gradOffsetI] - x[xOffset]) <= T(1.e-6)) {
|
|
z[zOffset] = gradOut[gradOffsetO];
|
|
}
|
|
}
|
|
}
|
|
|
|
// -------------------------------------------------------------------------------------------------------------- //
|
|
template <typename T, typename I>
|
|
static __global__ void segmentMinBPTadKernel(const void* inputBuf, const Nd4jLong* inputShape, void* forwardOutput,
|
|
const Nd4jLong* forwardShape, void* eps, const Nd4jLong* epsShape,
|
|
const void* indicesBuf, const Nd4jLong* indicesShape,
|
|
void* outputBuf, const Nd4jLong* outputShape,
|
|
const Nd4jLong* inputTad, const Nd4jLong* inputOffsets,
|
|
const Nd4jLong* gradInTad, const Nd4jLong* gradInOffsets,
|
|
const Nd4jLong* gradOutTad, const Nd4jLong* gradOutOffsets,
|
|
const Nd4jLong* outTad, const Nd4jLong* outOffsets) {
|
|
__shared__ const T* x;
|
|
__shared__ T* gradIn;
|
|
__shared__ T* gradOut;
|
|
__shared__ const I* y;
|
|
__shared__ T* z;
|
|
__shared__ Nd4jLong xLen, yLen, gradLen, currentLen;
|
|
|
|
if (threadIdx.x == 0) {
|
|
xLen = shape::length(inputShape);
|
|
x = reinterpret_cast<const T*>(inputBuf);
|
|
y = reinterpret_cast<const I*>(indicesBuf);
|
|
z = reinterpret_cast<T*>(outputBuf);
|
|
yLen = shape::length(indicesShape);
|
|
gradOut = reinterpret_cast<T*>(eps);
|
|
gradIn = reinterpret_cast<T*>(forwardOutput);
|
|
gradLen = shape::length(epsShape);
|
|
currentLen = shape::length(outTad);
|
|
}
|
|
__syncthreads();
|
|
|
|
for (auto i = blockIdx.x; i < yLen; i += gridDim.x) {
|
|
auto yIndex = shape::getIndexOffset(i, indicesShape);
|
|
auto segment = y[yIndex];
|
|
auto current = x + inputOffsets[i];
|
|
auto currentOut = z + outOffsets[i];
|
|
auto in = gradIn + gradInOffsets[segment];
|
|
auto outGrad = gradOut + gradOutOffsets[segment];
|
|
|
|
for (auto e = threadIdx.x; e < currentLen; e += blockDim.x) {
|
|
if (sd::math::nd4j_abs(in[e] - current[e]) <= T(1.e-6))
|
|
currentOut[e] = outGrad[e];
|
|
}
|
|
}
|
|
}
|
|
|
|
// -------------------------------------------------------------------------------------------------------------- //
|
|
template <typename T, typename I>
|
|
int segmentMinFunctorBP_(sd::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output) {
|
|
//int numOfClasses = gradOut->sizeAt(0);
|
|
// if input is a vector: (as if in doc sample)
|
|
auto stream = context->getCudaStream();
|
|
NDArray tempRes(gradOut->ordering(), gradOut->getShapeAsVector(), DataTypeUtils::fromT<T>(), context);//->shapeInfo(), context);
|
|
segmentMinFunctor_<T, I>(context, input, indices, &tempRes);
|
|
NDArray::prepareSpecialUse({output}, {input, indices, gradOut, &tempRes});
|
|
if (input->isVector()) {
|
|
Nd4jLong loop_size = input->lengthOf();
|
|
auto numOfClasses = gradOut->lengthOf(); //indices->e<Nd4jLong>(loop_size - 1);
|
|
|
|
segmentMinBPLinearKernel<T,I><<<gradOut->lengthOf(), input->lengthOf(), 256, *stream>>>(input->specialBuffer(), input->specialShapeInfo(),
|
|
tempRes.specialBuffer(), tempRes.specialShapeInfo(), gradOut->specialBuffer(), gradOut->specialShapeInfo(),
|
|
indices->specialBuffer(), indices->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo());
|
|
}
|
|
else {
|
|
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
|
|
auto packX = sd::ConstantTadHelper::getInstance()->tadForDimensions(input->shapeInfo(), dimensions);
|
|
auto packZ = sd::ConstantTadHelper::getInstance()->tadForDimensions(output->shapeInfo(), dimensions);
|
|
auto packGradIn = sd::ConstantTadHelper::getInstance()->tadForDimensions(tempRes.shapeInfo(), dimensions);
|
|
auto packGradOut = sd::ConstantTadHelper::getInstance()->tadForDimensions(gradOut->shapeInfo(), dimensions);
|
|
auto inputTads = packX.specialShapeInfo();
|
|
auto inputTadOffsets = packX.specialOffsets();
|
|
auto outputTads = packZ.specialShapeInfo();
|
|
auto outputTadOffsets = packZ.specialOffsets();
|
|
auto gradInTads = packGradIn.specialShapeInfo();
|
|
auto gradInTadOffsets = packGradIn.specialOffsets();
|
|
auto gradOutTads = packGradOut.specialShapeInfo();
|
|
auto gradOutTadOffsets = packGradOut.specialOffsets();
|
|
|
|
segmentMinBPTadKernel<T,I><<<gradOut->lengthOf(), input->lengthOf(), 256, *stream>>>(input->specialBuffer(), input->specialShapeInfo(),
|
|
tempRes.specialBuffer(), tempRes.specialShapeInfo(), gradOut->specialBuffer(), gradOut->specialShapeInfo(),
|
|
indices->specialBuffer(), indices->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo(),
|
|
inputTads, inputTadOffsets, gradInTads, gradInTadOffsets, gradOutTads, gradOutTadOffsets,
|
|
outputTads, outputTadOffsets);
|
|
}
|
|
NDArray::registerSpecialUse({output}, {input, indices, gradOut, &tempRes});
|
|
return Status::OK();
|
|
}
|
|
// -------------------------------------------------------------------------------------------------------------- //
|
|
// segmen min
|
|
int segmentMinFunctorBP(sd::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output) {
|
|
NDArray::prepareSpecialUse({output}, {input, indices, gradOut});
|
|
BUILD_DOUBLE_SELECTOR(output->dataType(), indices->dataType(), return segmentMinFunctorBP_, (context, input,
|
|
indices, gradOut, output), FLOAT_TYPES, INDEXING_TYPES);
|
|
NDArray::registerSpecialUse({output}, {input, indices, gradOut});
|
|
}
|
|
|
|
template <typename T, typename I>
|
|
static int unsortedSegmentMinFunctorBP_(sd::LaunchContext* context, NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
|
|
//int numOfClasses = gradOut->sizeAt(0);
|
|
// if input is a vector: (as if in doc sample)
|
|
auto stream = context->getCudaStream();
|
|
NDArray tempRes(gradOut->ordering(), gradOut->getShapeAsVector(), DataTypeUtils::fromT<T>(), context);//->shapeInfo(), context);
|
|
unsortedSegmentMinFunctor_<T, I>(context, input, indices, numOfClasses, &tempRes);
|
|
NDArray::prepareSpecialUse({output}, {input, indices, gradOut, &tempRes});
|
|
if (input->isVector()) {
|
|
Nd4jLong loop_size = input->lengthOf();
|
|
auto numOfClasses = gradOut->lengthOf(); //indices->e<Nd4jLong>(loop_size - 1);
|
|
segmentMinBPLinearKernel<T,I><<<gradOut->lengthOf(), input->lengthOf(), 256, *stream>>>(input->specialBuffer(), input->specialShapeInfo(),
|
|
tempRes.specialBuffer(), tempRes.specialShapeInfo(), gradOut->specialBuffer(), gradOut->specialShapeInfo(),
|
|
indices->specialBuffer(), indices->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo());
|
|
}
|
|
else {
|
|
std::vector<int> dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0});
|
|
auto packX = sd::ConstantTadHelper::getInstance()->tadForDimensions(input->shapeInfo(), dimensions);
|
|
auto packZ = sd::ConstantTadHelper::getInstance()->tadForDimensions(output->shapeInfo(), dimensions);
|
|
auto packGradIn = sd::ConstantTadHelper::getInstance()->tadForDimensions(tempRes.shapeInfo(), dimensions);
|
|
auto packGradOut = sd::ConstantTadHelper::getInstance()->tadForDimensions(gradOut->shapeInfo(), dimensions);
|
|
auto inputTads = packX.specialShapeInfo();
|
|
auto inputTadOffsets = packX.specialOffsets();
|
|
auto outputTads = packZ.specialShapeInfo();
|
|
auto outputTadOffsets = packZ.specialOffsets();
|
|
auto gradInTads = packGradIn.specialShapeInfo();
|
|
auto gradInTadOffsets = packGradIn.specialOffsets();
|
|
auto gradOutTads = packGradOut.specialShapeInfo();
|
|
auto gradOutTadOffsets = packGradOut.specialOffsets();
|
|
|
|
segmentMinBPTadKernel<T,I><<<gradOut->lengthOf(), input->lengthOf(), 256, *stream>>>(input->specialBuffer(), input->specialShapeInfo(),
|
|
tempRes.specialBuffer(), tempRes.specialShapeInfo(), gradOut->specialBuffer(), gradOut->specialShapeInfo(),
|
|
indices->specialBuffer(), indices->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo(),
|
|
inputTads, inputTadOffsets, gradInTads, gradInTadOffsets, gradOutTads, gradOutTadOffsets,
|
|
outputTads, outputTadOffsets);
|
|
}
|
|
NDArray::registerSpecialUse({output}, {input, indices, gradOut, &tempRes});
|
|
return Status::OK();
|
|
}
|
|
// -------------------------------------------------------------------------------------------------------------- //
|
|
int unsortedSegmentMinFunctorBP(sd::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) {
|
|
NDArray::prepareSpecialUse({output}, {input, indices, gradOut});
|
|
BUILD_DOUBLE_SELECTOR(output->dataType(), indices->dataType(), return unsortedSegmentMinFunctorBP_, (context, input, indices, gradOut, numOfClasses, output), FLOAT_TYPES, INDEXING_TYPES);
|
|
NDArray::registerSpecialUse({output}, {input, indices, gradOut});
|
|
}
|
|
}
|
|
}
|
|
} |