raver119 320924278d
Legacy API changes (#441)
* initial commit

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* another initial commit

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* another initial commit

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* one more initial commit

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next step

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next step

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next step

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next step

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Refactored buffer() and shapeInfo() methods usage with NDArray class.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt Graph class methods to use const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt choose op to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt where op shape method to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt lstsq op to use constant empty shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt matrix_diag_part op shape routine to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt determinant ops to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt mean_pairwssqerr_loss ops to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt ops shape methods.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt shape methods for loss ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt log_loss op shape method.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt shape methods for ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt dilation2d ops shape methods.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted deconv2d ops shape methods.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted dynamicRNN op shape method.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted shape methods for ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted shape methods for lstm layer ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* few updates

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* first cuda tweak

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Adopt constant shapes for sconv2d ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt constant shapes for gru ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt constant shapes with shape methods for segment ops and so on.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted constant shapes with unsorted_segment_* ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted constant shapes with gamma op shape method.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted shape methods of reduce_stddev ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted shape methods for reduce_* ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt shape method for squeeze op.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt strided_slice shape method.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored concat op shape method to adopt constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted shape method for mirror_pad op.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted split op shape method.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted tile ops shape methods.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Added const cast for mkldnn routines handles.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored logSoftMaxForVector_ routine to conform with proper data and shape pointer casts.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Cosmetic changes to proper usage of constant pointers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored a couple shape comparators for strides and addBias helpers to proper use data pointers with inplace option.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored depthToSpace helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored histogram helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored im2col helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored gather and gatherND helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage on percentile helper.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed gather shape with helpers and range buffer usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with space to depth helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage and constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with LUP decomposition>

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored onehot_ helper.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored pad and prefix to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactoed softmax helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed space to batch helpers to use buffers properly.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed stack and split helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with sparse to dense helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with mindistance_ helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with tile helper.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed constant shape usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed constant shape usage with legacy pairwise bool ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored a couple of methods to adopt constant shape usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed broadcasting with constant shape."

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const usage with inplace reverse and constant shapes with legacy reduction.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored legacy ops with const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored sort to adopt constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected sort for constant shape usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed constant shape usage with special methods.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored Context to conform with constant shape usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* CUDA broadcasting headers

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* pairwise/indexreduce/random headers

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Refactored native ops to adopt constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* legacy reduce3/scalar headers

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Corrected pullRow signature and tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected routines to proper use of constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored tests to use constant shapes properly.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored legacy ops tests to use constant shapes properly.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored buffer usage with NDArray tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed native ops tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed special concat routine.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with test.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with a test.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored TAD.h and tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored calcStrides* routines to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed miscelaneous errors with constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* NativeOps const changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Corrected definitions for declared functions.

Signed-off-by: shugeo <sgazeos@gmail.com>

* NativeOps const changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* few more const changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Fixed const shapes with shape routines.

Signed-off-by: shugeo <sgazeos@gmail.com>

* few more const changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Fixed shape method for broadcastable case.

Signed-off-by: shugeo <sgazeos@gmail.com>

* few more const changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* xw_plus_b BP shape fn restored

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Fixed signatures with broadcasting.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Repaired backprops shape methods for a set of operations.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored broadcast bool for cuda.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored methods for 3 args with const qualifier.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed a couple of kernel signatures for broadcasting.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed kernels signatures for const buffers and shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored pairwise methods to persistent buffers and shapes usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt const to buffers and shapes with kernels.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt const to buffers and shapes with scalar kernels.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored indexreduce kernels signatures to use const buffers and shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored pairwise kernels to adopt cons shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored pairwise bool kernels to adopt cons shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored random special ops to conform with const shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored native ops to conform with const shapes and buffers under cuda platform.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Cosmetical changes only.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const shapes and buffers error.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected start pos routine.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored methods to conform with const shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored helpers to use proper methods instead.

Signed-off-by: shugeo <sgazeos@gmail.com>

* bunch of changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next bunch of changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next bunch of changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Fixed execScalar declaration.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed execScalar declaration.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected const shape cases with sort and so on.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const shapes for sort.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored kernel declarations to adopt const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed kernels declarations to adopt const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected kernel declarations to adopt const shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed kernels declarations to adopt const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed segment helpers kernels declarations and so on to adopt const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const shape usage with segment and solve helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed kernel declaration with adjustWeight helper.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed cuda implementations for constant shape helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted const shape usage with kernels.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted top_k kernels to use const shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected kernels declarations to adopt const shapes with helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored NDArray definitions to adopt const shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const shapes with image suppression helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Slight improvement with buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored buffer usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored buffer usage with tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const shape usage with definitions.

Signed-off-by: shugeo <sgazeos@gmail.com>

* minor updates on cpu side

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Refactored const shape usage with ConstantDescritor and native ops with cuda platform.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored tear and tile kernels to adopt with const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* softmax_loop fix

Signed-off-by: raver119 <raver119@gmail.com>

* update missing signature

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* softmax again

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* few more missing consts

Signed-off-by: raver119 <raver119@gmail.com>

* new methods updated

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

Co-authored-by: shugeo <sgazeos@gmail.com>
2020-05-09 08:06:14 +03:00

426 lines
19 KiB
Plaintext

/*******************************************************************************
* Copyright (c) 2019 Konduit K.K.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com)
// @author Oleh Semeniv (oleg.semeniv@gmail.com)
//
#include <system/op_boilerplate.h>
#include <ops/declarable/helpers/imagesHelpers.h>
#include <helpers/ConstantTadHelper.h>
#include <ops/declarable/helpers/adjust_hue.h>
#include <helpers/PointersManager.h>
namespace sd {
namespace ops {
namespace helpers {
///////////////////////////////////////////////////////////////////
template<typename T>
__global__ void rgbToYuvCuda(const void* vx, const Nd4jLong* xShapeInfo, const Nd4jLong* xTadOffsets, void* vz, const Nd4jLong *zShapeInfo, const Nd4jLong* zTadOffsets, const Nd4jLong numOfTads, const int dimC) {
const T* x = reinterpret_cast<const T*>(vx);
T* z = reinterpret_cast<T*>(vz);
__shared__ int rank;
__shared__ Nd4jLong xDimCstride, zDimCstride;
if (threadIdx.x == 0) {
rank = shape::rank(xShapeInfo);
xDimCstride = shape::stride(xShapeInfo)[dimC];
zDimCstride = shape::stride(zShapeInfo)[dimC];
}
__syncthreads();
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
for (Nd4jLong i = tid; i < numOfTads; i += gridDim.x * blockDim.x) {
const T* xTad = x + xTadOffsets[i];
T* zTad = z + zTadOffsets[i];
rgbYuv<T>(xTad[0], xTad[xDimCstride], xTad[2 * xDimCstride], zTad[0], zTad[zDimCstride], zTad[2 * zDimCstride]);
}
}
///////////////////////////////////////////////////////////////////
template<typename T>
linkage void rgbToYuvCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const cudaStream_t* stream, const void* vx, const Nd4jLong* xShapeInfo, const Nd4jLong* xTadOffsets, void* vz, const Nd4jLong* zShapeInfo, const Nd4jLong* zTadOffsets, const Nd4jLong numOfTads, const int dimC) {
rgbToYuvCuda<T> << <blocksPerGrid, threadsPerBlock, 256, * stream >> > (vx, xShapeInfo, xTadOffsets, vz, zShapeInfo, zTadOffsets, numOfTads, dimC);
}
///////////////////////////////////////////////////////////////////
void transformRgbYuv(sd::LaunchContext* context, const NDArray& input, NDArray& output, const int dimC) {
auto packX = sd::ConstantTadHelper::getInstance()->tadForDimensions(input.shapeInfo(), { dimC });
auto packZ = sd::ConstantTadHelper::getInstance()->tadForDimensions(output.shapeInfo(), { dimC });
const Nd4jLong numOfTads = packX.numberOfTads();
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (numOfTads + threadsPerBlock - 1) / threadsPerBlock;
PointersManager manager(context, "yuv_to_rgb");
NDArray::prepareSpecialUse({ &output }, { &input });
BUILD_SINGLE_SELECTOR(input.dataType(), rgbToYuvCudaLauncher, (blocksPerGrid, threadsPerBlock, context->getCudaStream(), input.specialBuffer(), input.specialShapeInfo(), packX.platformOffsets(), output.specialBuffer(), output.specialShapeInfo(), packZ.platformOffsets(), numOfTads, dimC), FLOAT_TYPES);
NDArray::registerSpecialUse({ &output }, { &input });
manager.synchronize();
}
///////////////////////////////////////////////////////////////////
template<typename T>
__global__ void yuvToRgbCuda(const void* vx, const Nd4jLong* xShapeInfo, const Nd4jLong* xTadOffsets, void* vz, const Nd4jLong *zShapeInfo, const Nd4jLong* zTadOffsets, const Nd4jLong numOfTads, const int dimC) {
const T* x = reinterpret_cast<const T*>(vx);
T* z = reinterpret_cast<T*>(vz);
__shared__ int rank;
__shared__ Nd4jLong xDimCstride, zDimCstride;
if (threadIdx.x == 0) {
rank = shape::rank(xShapeInfo);
xDimCstride = shape::stride(xShapeInfo)[dimC];
zDimCstride = shape::stride(zShapeInfo)[dimC];
}
__syncthreads();
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
for (Nd4jLong i = tid; i < numOfTads; i += gridDim.x * blockDim.x) {
const T* xTad = x + xTadOffsets[i];
T* zTad = z + zTadOffsets[i];
yuvRgb<T>(xTad[0], xTad[xDimCstride], xTad[2 * xDimCstride], zTad[0], zTad[zDimCstride], zTad[2 * zDimCstride]);
}
}
///////////////////////////////////////////////////////////////////
template<typename T>
linkage void yuvToRgbCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const cudaStream_t* stream, const void* vx, const Nd4jLong* xShapeInfo, const Nd4jLong* xTadOffsets, void* vz, const Nd4jLong* zShapeInfo, const Nd4jLong* zTadOffsets, const Nd4jLong numOfTads, const int dimC) {
yuvToRgbCuda<T> << <blocksPerGrid, threadsPerBlock, 256, * stream >> > (vx, xShapeInfo, xTadOffsets, vz, zShapeInfo, zTadOffsets, numOfTads, dimC);
}
///////////////////////////////////////////////////////////////////
void transformYuvRgb(sd::LaunchContext* context, const NDArray& input, NDArray& output, const int dimC) {
auto packX = sd::ConstantTadHelper::getInstance()->tadForDimensions(input.shapeInfo(), { dimC });
auto packZ = sd::ConstantTadHelper::getInstance()->tadForDimensions(output.shapeInfo(), { dimC });
const Nd4jLong numOfTads = packX.numberOfTads();
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (numOfTads + threadsPerBlock - 1) / threadsPerBlock;
PointersManager manager(context, "yuv_to_rgb");
NDArray::prepareSpecialUse({ &output }, { &input });
BUILD_SINGLE_SELECTOR(input.dataType(), yuvToRgbCudaLauncher, (blocksPerGrid, threadsPerBlock, context->getCudaStream(), input.specialBuffer(), input.specialShapeInfo(), packX.platformOffsets(), output.specialBuffer(), output.specialShapeInfo(), packZ.platformOffsets(), numOfTads, dimC), FLOAT_TYPES);
NDArray::registerSpecialUse({ &output }, { &input });
manager.synchronize();
}
///////////////////////////////////////////////////////////////////
// for example xShapeInfo = {2,3,4}, zShapeInfo = {2,1,4}
template<typename T>
__global__ void rgbToGrsCuda(const void *vx, const Nd4jLong *xShapeInfo, void *vz, const Nd4jLong *zShapeInfo, const int dimC) {
const auto x = reinterpret_cast<const T*>(vx);
auto z = reinterpret_cast<T*>(vz);
__shared__ Nd4jLong zLen;
__shared__ int rank, *sharedMem; // xRank == zRank
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
sharedMem = reinterpret_cast<int*>(shmem);
zLen = shape::length(zShapeInfo);
rank = shape::rank(zShapeInfo);
}
__syncthreads();
auto coords = sharedMem + threadIdx.x * rank;
for (Nd4jLong i = blockIdx.x * blockDim.x + threadIdx.x; i < zLen; i += gridDim.x * blockDim.x) {
if (dimC == (rank - 1) && 'c' == shape::order(xShapeInfo) && 1 == shape::elementWiseStride(xShapeInfo) && 'c' == shape::order(zShapeInfo) && 1 == shape::elementWiseStride(zShapeInfo)) {
const auto xStep = i*3;
z[i] = 0.2989f * x[xStep] + 0.5870f * x[xStep + 1] + 0.1140f * x[xStep + 2];
}
else {
shape::index2coords(i, zShapeInfo, coords);
const auto zOffset = shape::getOffset(zShapeInfo, coords);
const auto xOffset0 = shape::getOffset(xShapeInfo, coords);
const auto xOffset1 = xOffset0 + shape::stride(xShapeInfo)[dimC];
const auto xOffset2 = xOffset1 + shape::stride(xShapeInfo)[dimC];
z[zOffset] = 0.2989f * x[xOffset0] + 0.5870f * x[xOffset1] + 0.1140f * x[xOffset2];
}
}
}
///////////////////////////////////////////////////////////////////
template<typename T>
linkage void rgbToGrsCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const void *vx, const Nd4jLong *xShapeInfo, void *vz, const Nd4jLong *zShapeInfo, const int dimC) {
rgbToGrsCuda<T><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(vx, xShapeInfo, vz, zShapeInfo, dimC);
}
///////////////////////////////////////////////////////////////////
void transformRgbGrs(sd::LaunchContext* context, const NDArray& input, NDArray& output, const int dimC) {
PointersManager manager(context, "rgbToGrs");
const int threadsPerBlock = MAX_NUM_THREADS / 4;
const int blocksPerGrid = (input.lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
const int sharedMem = input.rankOf() * sizeof(int) * threadsPerBlock + 128;
NDArray::prepareSpecialUse({&output}, {&input});
BUILD_SINGLE_SELECTOR(input.dataType(), rgbToGrsCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), input.specialBuffer(), input.specialShapeInfo(), output.specialBuffer(), output.specialShapeInfo(), dimC), NUMERIC_TYPES);
NDArray::registerSpecialUse({&output}, {&input});
manager.synchronize();
}
///////////////////////////////////////////////////////////////////
template <typename T>
static void _CUDA_G rgbToHsvCuda(const void* vx, const Nd4jLong* xShapeInfo, const Nd4jLong* xTadOffsets,
void* vz, const Nd4jLong *zShapeInfo, const Nd4jLong* zTadOffsets,
const Nd4jLong numOfTads, const int dimC) {
const T* x = reinterpret_cast<const T*>(vx);
T* z = reinterpret_cast<T*>(vz);
__shared__ int rank;
__shared__ Nd4jLong xDimCstride, zDimCstride;
if (threadIdx.x == 0) {
rank = shape::rank(xShapeInfo);
xDimCstride = shape::stride(xShapeInfo)[dimC];
zDimCstride = shape::stride(zShapeInfo)[dimC];
}
__syncthreads();
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
for (Nd4jLong i = tid; i < numOfTads; i += gridDim.x * blockDim.x) {
const T* xTad = x + xTadOffsets[i];
T* zTad = z + zTadOffsets[i];
rgbToHsv<T>(xTad[0], xTad[xDimCstride], xTad[2 * xDimCstride], zTad[0], zTad[zDimCstride], zTad[2 * zDimCstride]);
}
}
///////////////////////////////////////////////////////////////////
template <typename T>
static void _CUDA_G hsvToRgbCuda(const void* vx, const Nd4jLong* xShapeInfo, const Nd4jLong* xTadOffsets,
void* vz, const Nd4jLong *zShapeInfo, const Nd4jLong* zTadOffsets,
const Nd4jLong numOfTads, const int dimC) {
const T* x = reinterpret_cast<const T*>(vx);
T* z = reinterpret_cast<T*>(vz);
__shared__ int rank;
__shared__ Nd4jLong xDimCstride, zDimCstride;
if (threadIdx.x == 0) {
rank = shape::rank(xShapeInfo);
xDimCstride = shape::stride(xShapeInfo)[dimC];
zDimCstride = shape::stride(zShapeInfo)[dimC];
}
__syncthreads();
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
for (Nd4jLong i = tid; i < numOfTads; i += gridDim.x * blockDim.x) {
const T* xTad = x + xTadOffsets[i];
T* zTad = z + zTadOffsets[i];
hsvToRgb<T>(xTad[0], xTad[xDimCstride], xTad[2 * xDimCstride], zTad[0], zTad[zDimCstride], zTad[2 * zDimCstride]);
}
}
///////////////////////////////////////////////////////////////////
template<typename T>
static _CUDA_H void hsvToRgbCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const cudaStream_t *stream,
const void* vx, const Nd4jLong* xShapeInfo, const Nd4jLong* xTadOffsets,
void* vz, const Nd4jLong* zShapeInfo, const Nd4jLong* zTadOffsets,
const Nd4jLong numOfTads, const int dimC) {
hsvToRgbCuda<T><<<blocksPerGrid, threadsPerBlock, 256, *stream>>>(vx, xShapeInfo, xTadOffsets, vz, zShapeInfo, zTadOffsets, numOfTads, dimC);
}
template<typename T>
static _CUDA_H void rgbToHsvCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const cudaStream_t *stream,
const void* vx, const Nd4jLong* xShapeInfo, const Nd4jLong* xTadOffsets,
void* vz, const Nd4jLong* zShapeInfo, const Nd4jLong* zTadOffsets,
const Nd4jLong numOfTads, const int dimC) {
rgbToHsvCuda<T><<<blocksPerGrid, threadsPerBlock, 256, *stream>>>(vx, xShapeInfo, xTadOffsets, vz, zShapeInfo, zTadOffsets, numOfTads, dimC);
}
///////////////////////////////////////////////////////////////////
void transformHsvRgb(sd::LaunchContext* context, const NDArray* input, NDArray* output, const int dimC) {
auto packX = sd::ConstantTadHelper::getInstance()->tadForDimensions(input->shapeInfo(), {dimC});
auto packZ = sd::ConstantTadHelper::getInstance()->tadForDimensions(output->shapeInfo(), {dimC});
const Nd4jLong numOfTads = packX.numberOfTads();
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (numOfTads + threadsPerBlock - 1) / threadsPerBlock;
PointersManager manager(context, "hsv_to_rgb");
NDArray::prepareSpecialUse({output}, {input});
BUILD_SINGLE_SELECTOR(input->dataType(), hsvToRgbCudaLauncher, (blocksPerGrid, threadsPerBlock, context->getCudaStream(), input->specialBuffer(), input->specialShapeInfo(), packX.platformOffsets(), output->specialBuffer(), output->specialShapeInfo(), packZ.platformOffsets(), numOfTads, dimC), FLOAT_TYPES);
NDArray::registerSpecialUse({output}, {input});
manager.synchronize();
}
///////////////////////////////////////////////////////////////////
void transformRgbHsv(sd::LaunchContext* context, const NDArray* input, NDArray* output, const int dimC) {
auto packX = sd::ConstantTadHelper::getInstance()->tadForDimensions(input->shapeInfo(), {dimC});
auto packZ = sd::ConstantTadHelper::getInstance()->tadForDimensions(output->shapeInfo(), {dimC});
const Nd4jLong numOfTads = packX.numberOfTads();
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (numOfTads + threadsPerBlock - 1) / threadsPerBlock;
PointersManager manager(context, "rgb_to_hsv");
NDArray::prepareSpecialUse({output}, {input});
BUILD_SINGLE_SELECTOR(input->dataType(), rgbToHsvCudaLauncher, (blocksPerGrid, threadsPerBlock, context->getCudaStream(), input->specialBuffer(), input->specialShapeInfo(), packX.platformOffsets(), output->specialBuffer(), output->specialShapeInfo(), packZ.platformOffsets(), numOfTads, dimC), FLOAT_TYPES);
NDArray::registerSpecialUse({output}, {input});
manager.synchronize();
}
template<typename T>
__global__ void tripleTransformerCuda(const void *vx, const Nd4jLong *xShapeInfo, const Nd4jLong *xTadShapeInfo, const Nd4jLong *xOffsets, void *vz, const Nd4jLong *zShapeInfo, const Nd4jLong *zTadShapeInfo, const Nd4jLong *zOffsets, const int dimC, int mode, uint64_t numTads) {
const auto x = reinterpret_cast<const T*>(vx);
auto z = reinterpret_cast<T*>(vz);
__shared__ Nd4jLong zLen, *sharedMem;
__shared__ int rank; // xRank == zRank
float yiqarr[3][3] = {
{ 0.299f, 0.59590059f, 0.2115f },
{ 0.587f, -0.27455667f, -0.52273617f },
{ 0.114f, -0.32134392f, 0.31119955f }
};
float rgbarr[3][3] = {
{ 1.f, 1.f, 1.f },
{ 0.95598634f, -0.27201283f, -1.10674021f },
{ 0.6208248f, -0.64720424f, 1.70423049f }
};
auto tr = mode == 1? yiqarr : rgbarr;
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
sharedMem = reinterpret_cast<Nd4jLong*>(shmem);
zLen = shape::length(zShapeInfo);
rank = shape::rank(zShapeInfo);
}
__syncthreads();
Nd4jLong* coords = sharedMem + threadIdx.x * rank;
if (dimC == (rank - 1) && 'c' == shape::order(xShapeInfo) && 1 == shape::elementWiseStride(xShapeInfo) && 'c' == shape::order(zShapeInfo) && 1 == shape::elementWiseStride(zShapeInfo)) {
for (uint64_t f = blockIdx.x * blockDim.x + threadIdx.x; f < zLen / 3; f += gridDim.x * blockDim.x) {
auto i = f * 3;
auto xi0 = x[i];
auto xi1 = x[i+1];
auto xi2 = x[i+2];
for (int e = 0; e < 3; e++)
z[i + e] = xi0 * tr[0][e] + xi1 * tr[1][e] + xi2 * tr[2][e];
}
} else {
// TAD based case
const Nd4jLong xDimCstride = shape::stride(xShapeInfo)[dimC];
const Nd4jLong zDimCstride = shape::stride(zShapeInfo)[dimC];
for (uint64_t i = blockIdx.x * blockDim.x + threadIdx.x; i < numTads; i += blockDim.x * gridDim.x) {
const T* xTad = x + xOffsets[i];
T* zTad = z + zOffsets[i];
auto xi0 = xTad[0];
auto xi1 = xTad[xDimCstride];
auto xi2 = xTad[xDimCstride * 2];
for (int e = 0; e < 3; e++)
zTad[zDimCstride * e] = xi0 * tr[0][e] + xi1 * tr[1][e] + xi2 * tr[2][e];
}
}
}
template <typename T>
static void rgbYiq(sd::LaunchContext* context, const NDArray* input, NDArray* output, const int dimC) {
auto packX = sd::ConstantTadHelper::getInstance()->tadForDimensions(input->shapeInfo(), dimC);
auto packZ = sd::ConstantTadHelper::getInstance()->tadForDimensions(output->shapeInfo(), dimC);
NDArray::prepareSpecialUse({output}, {input});
return tripleTransformerCuda<T><<<256, 256, 8192, *context->getCudaStream()>>>(input->specialBuffer(), input->specialShapeInfo(), packX.platformShapeInfo(), packX.platformOffsets(), output->specialBuffer(), output->specialShapeInfo(), packZ.platformShapeInfo(), packZ.platformOffsets(), dimC, 1, packZ.numberOfTads());
NDArray::registerSpecialUse({output}, {input});
}
template <typename T>
FORCEINLINE static void yiqRgb(sd::LaunchContext* context, const NDArray* input, NDArray* output, const int dimC) {
auto packX = sd::ConstantTadHelper::getInstance()->tadForDimensions(input->shapeInfo(), dimC);
auto packZ = sd::ConstantTadHelper::getInstance()->tadForDimensions(output->shapeInfo(), dimC);
NDArray::prepareSpecialUse({output}, {input});
return tripleTransformerCuda<T><<<256, 256, 8192, *context->getCudaStream()>>>(input->specialBuffer(), input->specialShapeInfo(), packX.platformShapeInfo(), packX.platformOffsets(), output->specialBuffer(), output->specialShapeInfo(), packZ.platformShapeInfo(), packZ.platformOffsets(), dimC, 2, packZ.numberOfTads());
NDArray::registerSpecialUse({output}, {input});
}
void transformYiqRgb(sd::LaunchContext* context, const NDArray* input, NDArray* output, const int dimC) {
BUILD_SINGLE_SELECTOR(input->dataType(), yiqRgb, (context, input, output, dimC), FLOAT_TYPES);
}
void transformRgbYiq(sd::LaunchContext* context, const NDArray* input, NDArray* output, const int dimC) {
BUILD_SINGLE_SELECTOR(input->dataType(), rgbYiq, (context, input, output, dimC), FLOAT_TYPES);
}
}
}
}