raver119 320924278d
Legacy API changes (#441)
* initial commit

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* another initial commit

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* another initial commit

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* one more initial commit

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next step

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next step

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next step

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next step

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Refactored buffer() and shapeInfo() methods usage with NDArray class.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt Graph class methods to use const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt choose op to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt where op shape method to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt lstsq op to use constant empty shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt matrix_diag_part op shape routine to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt determinant ops to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt mean_pairwssqerr_loss ops to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt ops shape methods.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt shape methods for loss ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt log_loss op shape method.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt shape methods for ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt dilation2d ops shape methods.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted deconv2d ops shape methods.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted dynamicRNN op shape method.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted shape methods for ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted shape methods for lstm layer ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* few updates

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* first cuda tweak

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Adopt constant shapes for sconv2d ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt constant shapes for gru ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt constant shapes with shape methods for segment ops and so on.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted constant shapes with unsorted_segment_* ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted constant shapes with gamma op shape method.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted shape methods of reduce_stddev ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted shape methods for reduce_* ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt shape method for squeeze op.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt strided_slice shape method.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored concat op shape method to adopt constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted shape method for mirror_pad op.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted split op shape method.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted tile ops shape methods.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Added const cast for mkldnn routines handles.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored logSoftMaxForVector_ routine to conform with proper data and shape pointer casts.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Cosmetic changes to proper usage of constant pointers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored a couple shape comparators for strides and addBias helpers to proper use data pointers with inplace option.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored depthToSpace helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored histogram helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored im2col helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored gather and gatherND helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage on percentile helper.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed gather shape with helpers and range buffer usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with space to depth helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage and constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with LUP decomposition>

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored onehot_ helper.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored pad and prefix to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactoed softmax helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed space to batch helpers to use buffers properly.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed stack and split helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with sparse to dense helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with mindistance_ helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with tile helper.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed constant shape usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed constant shape usage with legacy pairwise bool ops.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored a couple of methods to adopt constant shape usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed broadcasting with constant shape."

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const usage with inplace reverse and constant shapes with legacy reduction.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored legacy ops with const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored sort to adopt constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected sort for constant shape usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed constant shape usage with special methods.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored Context to conform with constant shape usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* CUDA broadcasting headers

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* pairwise/indexreduce/random headers

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Refactored native ops to adopt constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* legacy reduce3/scalar headers

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Corrected pullRow signature and tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected routines to proper use of constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored tests to use constant shapes properly.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored legacy ops tests to use constant shapes properly.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored buffer usage with NDArray tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed native ops tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed special concat routine.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with test.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed buffer usage with a test.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored TAD.h and tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored calcStrides* routines to use constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed miscelaneous errors with constant shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* NativeOps const changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Corrected definitions for declared functions.

Signed-off-by: shugeo <sgazeos@gmail.com>

* NativeOps const changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* few more const changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Fixed const shapes with shape routines.

Signed-off-by: shugeo <sgazeos@gmail.com>

* few more const changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Fixed shape method for broadcastable case.

Signed-off-by: shugeo <sgazeos@gmail.com>

* few more const changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* xw_plus_b BP shape fn restored

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Fixed signatures with broadcasting.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Repaired backprops shape methods for a set of operations.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored broadcast bool for cuda.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored methods for 3 args with const qualifier.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed a couple of kernel signatures for broadcasting.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed kernels signatures for const buffers and shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored pairwise methods to persistent buffers and shapes usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt const to buffers and shapes with kernels.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopt const to buffers and shapes with scalar kernels.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored indexreduce kernels signatures to use const buffers and shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored pairwise kernels to adopt cons shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored pairwise bool kernels to adopt cons shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored random special ops to conform with const shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored native ops to conform with const shapes and buffers under cuda platform.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Cosmetical changes only.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const shapes and buffers error.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected start pos routine.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored methods to conform with const shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored helpers to use proper methods instead.

Signed-off-by: shugeo <sgazeos@gmail.com>

* bunch of changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next bunch of changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* next bunch of changes

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Fixed execScalar declaration.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed execScalar declaration.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected const shape cases with sort and so on.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const shapes for sort.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored kernel declarations to adopt const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed kernels declarations to adopt const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected kernel declarations to adopt const shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed kernels declarations to adopt const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed segment helpers kernels declarations and so on to adopt const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const shape usage with segment and solve helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed kernel declaration with adjustWeight helper.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed cuda implementations for constant shape helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted const shape usage with kernels.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Adopted top_k kernels to use const shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Corrected kernels declarations to adopt const shapes with helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored NDArray definitions to adopt const shapes and buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const shapes with image suppression helpers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Slight improvement with buffers.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored buffer usage.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored buffer usage with tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Fixed const shape usage with definitions.

Signed-off-by: shugeo <sgazeos@gmail.com>

* minor updates on cpu side

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* Refactored const shape usage with ConstantDescritor and native ops with cuda platform.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored tear and tile kernels to adopt with const shapes.

Signed-off-by: shugeo <sgazeos@gmail.com>

* softmax_loop fix

Signed-off-by: raver119 <raver119@gmail.com>

* update missing signature

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* softmax again

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* few more missing consts

Signed-off-by: raver119 <raver119@gmail.com>

* new methods updated

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

Co-authored-by: shugeo <sgazeos@gmail.com>
2020-05-09 08:06:14 +03:00

275 lines
13 KiB
Plaintext

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include <ops/declarable/helpers/dropout.h>
#include <legacy/NativeOps.h>
#include <vector>
#include <memory>
#include <exceptions/cuda_exception.h>
namespace sd {
namespace ops {
namespace helpers {
template <typename T>
static __global__ void dropoutSimpleKernel(void const* inputBuf, Nd4jLong const* inputShape, void* outputBuf, Nd4jLong const* outputShape, double probVal, int inLen, sd::graph::RandomGenerator* nodeRng) {
auto tid = blockIdx.x * blockDim.x + threadIdx.x;
auto step = blockDim.x * gridDim.x;
T const* input = reinterpret_cast<T const*>(inputBuf);
T* output = reinterpret_cast<T*>(outputBuf);
// trivial idea: loop through all elements, get independent probability for each element to be nullified
for (Nd4jLong e = 0; e < inLen; ++e) {
T val = nodeRng->relativeT(e, T(0.f), T(1.f));
// if probability is ok - we're saving scaled value
if (double(val) < probVal)
output[shape::getIndexOffset(e, outputShape)] = T(input[shape::getIndexOffset(e, inputShape)] / probVal);
}
}
template <typename T>
static void dropoutSimple(sd::LaunchContext* context, NDArray const* input, NDArray* output, double probValue, int seed) {
sd::graph::RandomGenerator nodeRng(3019L, seed);
int inLen = input->lengthOf();
sd::graph::RandomGenerator* dRandom;
auto stream = context->getCudaStream();
NDArray::prepareSpecialUse({output}, {input});
auto err = cudaMalloc(&dRandom, sizeof(sd::graph::RandomGenerator));
if (err) {
throw cuda_exception::build("helpers::dropoutSimple: Cannot allocate device memory for random generator.", err);
}
err = cudaMemcpy(dRandom, &nodeRng, sizeof(sd::graph::RandomGenerator), cudaMemcpyHostToDevice);
if (err) {
throw cuda_exception::build("helpers::dropoutSimple: Cannot set up device memory for random generator.", err);
}
dropoutSimpleKernel<T><<<128, 256, 1024, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo(), probValue, inLen, dRandom);
err = cudaFree(dRandom);
if (err) {
throw cuda_exception::build("helpers::dropoutSimple: Cannot deallocate device memory for random generator.", err);
}
NDArray::registerSpecialUse({output}, {input});
}
template <typename T>
int _dropOutFunctor(graph::Context& context, NDArray* input, NDArray* output, NDArray* reduceShape, int seed, double probValue) {
if (reduceShape == nullptr){
dropoutSimple<T>(context.launchContext(), input, output, probValue, seed);
}
else {
REQUIRE_TRUE(reduceShape->lengthOf() <= input->rankOf(), 0, "dropout: Noise shape should be fittable to input");
std::vector<Nd4jLong> dims(reduceShape->lengthOf());
reduceShape->syncToHost(); // to ensure that follows are actual
bool fit = true;
for( int i = 0; i < dims.size(); i++ ) {
if (fit) {
dims[i] = reduceShape->e<Nd4jLong>(i);
for (int e = 0; e < input->rankOf(); ++e)
if (fit)
if (input->sizeAt(e) % dims[i]) {
fit = false;
}
}
}
// check dims to fit input
REQUIRE_TRUE(fit, 0, "dropout: Noise shape should fit to input rank.");
std::unique_ptr<NDArray> chunk(new NDArray('c', dims, output->dataType(), context.launchContext()));
chunk->assign(1.f);
dropoutSimple<T>(context.launchContext(), chunk.get(), chunk.get(), probValue, seed);
// broadcast chunk to full matrix
std::unique_ptr<NDArray> dropOutMultiplier(new NDArray(*input));
dropOutMultiplier->assign(1.f);
*dropOutMultiplier += *chunk;
// FIXME: we could do this in one step, aren't we?
output->assign(*input * *dropOutMultiplier); //input->applyPairwiseTransform(pairwise::Multiply, dropOutMultiplier.get(), output, nullptr);
}
return Status::OK();
}
int dropOutFunctor(graph::Context& context, NDArray* input, NDArray* output, NDArray* reduceShape, int seed, double probValue) {
auto xType = input->dataType();
NDArray::prepareSpecialUse({output}, {input});
BUILD_SINGLE_SELECTOR(xType, return _dropOutFunctor, (context, input, output, reduceShape, seed, probValue), FLOAT_TYPES);
NDArray::registerSpecialUse({output}, {input});
}
/////////////////////////////////// backrpopagations ///////////////////////////////////////////////
template <typename T>
static __global__ void dropoutBPKernel(void* outputBuf, Nd4jLong const* outputShape, void* gradOutBuf, Nd4jLong const* gradOutShape, double probValue) {
__shared__ T* output;
__shared__ T* input;
__shared__ int len;
if (threadIdx.x == 0) {
len = shape::length(outputShape);
output = reinterpret_cast<T*>(outputBuf);
input = reinterpret_cast<T*>(gradOutBuf);
}
__syncthreads();
auto tid = blockIdx.x * blockDim.x + threadIdx.x;
auto step = blockDim.x * gridDim.x;
for (int e = tid; e < len; e += step) {
const auto zOffset = shape::getIndexOffset(e, outputShape);
// if probability was non-zero on FF step, we'll scale grads back
if (output[zOffset] != T(0.))
output[zOffset] = T(input[shape::getIndexOffset(e, gradOutShape)] / probValue);
}
}
template <typename T>
static int dropOutFunctorBP_(graph::Context& context, NDArray* input, NDArray* gradOut, NDArray* output, NDArray* reduceShape, int seed, double probValue) {
// we're making additional FF run to see how probabilities played out with given seeds
int res = dropOutFunctor(context, input, output, reduceShape, seed, probValue);
auto stream = context.launchContext()->getCudaStream();
NDArray::prepareSpecialUse({output}, {input, gradOut});
if (ND4J_STATUS_OK == res)
dropoutBPKernel<T><<<128, 256, 1024, *stream>>>(output->specialBuffer(), output->specialShapeInfo(), gradOut->specialBuffer(), gradOut->specialShapeInfo(), probValue);
NDArray::registerSpecialUse({output}, {input, gradOut});
return res;
}
template <typename T>
static __global__ void alphaDropoutSimpleKernel(void const* inputBuf, Nd4jLong const* inputShape, void* outputBuf, Nd4jLong const* outputShape, double probValue, double alpha, double alpha1, double beta, int inLen, sd::graph::RandomGenerator* nodeRng) {
auto tid = blockIdx.x * blockDim.x + threadIdx.x;
auto step = blockDim.x * gridDim.x;
T const* input = reinterpret_cast<T const*>(inputBuf);
T* output = reinterpret_cast<T*>(outputBuf);
for (auto e = tid; e < inLen; e += step) {
T val = nodeRng->relativeT(e, T(0.f), T(1.f));
T xVal = input[shape::getIndexOffset(e, inputShape)];
output[shape::getIndexOffset(e, outputShape)] = (val >= T(probValue) ? T(alpha * beta + alpha1) : T(alpha * (double)xVal + alpha1));
}
}
template <typename T>
static void alphaDropoutSimple(sd::LaunchContext* context, NDArray const* input, NDArray* output, int seed, double probValue, double alpha, double alpha1, double beta) {
sd::graph::RandomGenerator nodeRng(3019L, seed), *dRandom;
auto stream = context->getCudaStream();
auto err = cudaMalloc(&dRandom, sizeof(sd::graph::RandomGenerator));
NDArray::prepareSpecialUse({output}, {input});
if (err) {
throw cuda_exception::build("helpers::alphaDropoutSimple: Cannot allocate device memory for random generator.", err);
}
err = cudaMemcpy(dRandom, &nodeRng, sizeof(sd::graph::RandomGenerator), cudaMemcpyHostToDevice);
if (err) {
throw cuda_exception::build("helpers::alphaDropoutSimple: Cannot set up device memory for random generator.", err);
}
alphaDropoutSimpleKernel<T><<<128, 256, 1024, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo(), probValue, alpha, alpha1, beta, output->lengthOf(), dRandom);
err = cudaFree(dRandom);
if (err) {
throw cuda_exception::build("helpers::alphaDropoutSimple: Cannot deallocate device memory for random generator.", err);
}
NDArray::registerSpecialUse({output}, {input});
}
template <typename T>
static int alphaDropOutFunctor_(graph::Context& context, NDArray* input, NDArray* output,
NDArray* reduceShape, int seed, double probValue, double alpha, double alpha1, double beta) {
if (reduceShape == nullptr){
alphaDropoutSimple<T>(context.launchContext(), input, output, seed, probValue, alpha, alpha1, beta);
}
else {
REQUIRE_TRUE(reduceShape->lengthOf() <= input->rankOf(), 0, "dropout: Noise shape should be fittable to input");
std::vector<Nd4jLong> dims(reduceShape->lengthOf());
reduceShape->syncToHost(); // to ensure that follows are actual
bool fit = true;
for( int i = 0; i < dims.size(); i++ ) {
if (fit) {
dims[i] = reduceShape->e<Nd4jLong>(i);
for (int e = 0; e < input->rankOf(); ++e)
if (fit)
if (input->sizeAt(e) % dims[i]) {
fit = false;
}
}
}
// check dims to fit input
REQUIRE_TRUE(fit, 0, "alpha_dropout: Noise shape should fit to input rank.");
std::unique_ptr<NDArray> chunk(new NDArray('c', dims, output->dataType(), context.launchContext()));
chunk->assign(1.f);
alphaDropoutSimple<T>(context.launchContext(), chunk.get(), chunk.get(), seed, probValue, alpha, alpha1, beta);
// broadcast chunk to full matrix
std::unique_ptr<NDArray> dropOutMultiplier(new NDArray(*input));
dropOutMultiplier->assign(1.f);
*dropOutMultiplier += *chunk;
output->assign(*input * *dropOutMultiplier); //input->applyPairwiseTransform(pairwise::Multiply, dropOutMultiplier.get(), output, nullptr);
}
return Status::OK();
}
template <typename T>
int alphaDropOutFunctorBP_(graph::Context& context, NDArray* input, NDArray* gradOut, NDArray* output,
NDArray* reduceShape, int seed, double probValue, double alpha, double alpha1, double beta) {
int res = alphaDropOutFunctor(context, input, output, reduceShape, seed, probValue, alpha, alpha1, beta);
if (res == ND4J_STATUS_OK) {
// FIXME: can we make it single-loop?
(*output) *= alpha;
(*output) *= (*gradOut); //->applyPairwiseTransform<transform::Multiply>(gradOut, output, nullptr);
}
return res;
}
int dropOutFunctorBP(graph::Context& context, NDArray* input, NDArray* gradOut, NDArray* output, NDArray* reduceShape, int seed, double probValue) {
BUILD_SINGLE_SELECTOR(context.dataType(), return dropOutFunctorBP_, (context, input, gradOut, output, reduceShape, seed, probValue), FLOAT_TYPES);
}
int alphaDropOutFunctor(graph::Context& context, NDArray* input, NDArray* output, NDArray* reduceShape, int seed, double probValue, double alpha, double alpha1, double beta) {
BUILD_SINGLE_SELECTOR(context.dataType(), return alphaDropOutFunctor_, (context, input, output, reduceShape, seed, probValue, alpha, alpha1, beta), FLOAT_TYPES);
}
int alphaDropOutFunctorBP(graph::Context& context, NDArray* input, NDArray* gradOut, NDArray* output, NDArray* reduceShape, int seed, double probValue, double alpha, double alpha1, double beta) {
BUILD_SINGLE_SELECTOR(context.dataType(), return alphaDropOutFunctorBP_, (context, input, gradOut, output, reduceShape, seed, probValue, alpha, alpha1, beta), FLOAT_TYPES);
}
}
}
}