Yurii Shyrma 753ce28a92
Shyrma sqrtm (#429)
* - start working on implementation of sqrtm op

Signed-off-by: Yurii <iuriish@yahoo.com>

* - improving householder procedure

Signed-off-by: Yurii <iuriish@yahoo.com>

* - further polishing householder stuff

Signed-off-by: Yurii <iuriish@yahoo.com>

* - polishing hh pivoting qr procedure

Signed-off-by: Yurii <iuriish@yahoo.com>

* - polishing BiDiagonalUp procedure

Signed-off-by: Yurii <iuriish@yahoo.com>

* - polishing householder sequence class

Signed-off-by: Yurii <iuriish@yahoo.com>

* - polishing jacobi svd class

Signed-off-by: Yurii <iuriish@yahoo.com>

* - polishing svd stuff 1

Signed-off-by: Yurii <iuriish@yahoo.com>

* - polishing svd stuff 2

Signed-off-by: Yurii <iuriish@yahoo.com>

* - implementation and testing class which performs Hessenberg decomposition of square matrix

Signed-off-by: Yurii <iuriish@yahoo.com>

* - add static method to JacobiSVD class which makes the continuous Givens rotation generation algorithm

Signed-off-by: Yurii <iuriish@yahoo.com>

* - implementation and testing auxiliary methods of Schur decomp class

Signed-off-by: Yurii <iuriish@yahoo.com>

* some references here and there

Signed-off-by: raver119 <raver119@gmail.com>

* - trying figure out difference between eigen and our Schur alg

Signed-off-by: Yurii <iuriish@yahoo.com>

* - testing fixing bugs in Schur decomposition op

Signed-off-by: Yurii <iuriish@yahoo.com>

* - start to implement class which performs calculation of eigen values and vectors

Signed-off-by: Yurii <iuriish@yahoo.com>

* - add to EigenValsAndVecs method which calculates complex eigen vectors

Signed-off-by: Yurii <iuriish@yahoo.com>

* - testing and fixing bugs in EigenValsAndVecs class

Signed-off-by: Yurii <iuriish@yahoo.com>

* - implementation and testing triangularSolver class

Signed-off-by: Yurii <iuriish@yahoo.com>

* Added a 2D routine for triangular systems solve.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored triangularSolve2D routine and tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored another test for triangularSolve2D.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored test for triangularSolve for vector-bar case.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Refactored triangularSolve2D routine and tests.

Signed-off-by: shugeo <sgazeos@gmail.com>

* - implementation of FullPivLU class

Signed-off-by: Yurii <iuriish@yahoo.com>

* - fix bugs in FullPivLU::solve method

Signed-off-by: Yurii <iuriish@yahoo.com>

* - correct permutation vector in FullPivLU::solve

Signed-off-by: Yurii <iuriish@yahoo.com>

* - correct include headers

Signed-off-by: Yurii <iuriish@yahoo.com>

* - implementation of Sqrtm class

Signed-off-by: Yurii <iuriish@yahoo.com>

* - testing and fixing bugs in Sqrtm class

Signed-off-by: Yurii <iuriish@yahoo.com>

* - include sqrtm classes to cuda folder, investigate in what places synchronization doesn't work

Signed-off-by: Yurii <iuriish@yahoo.com>

* Added implementation for cuda triangularSolve2D and also refactored triangularSolve2D for cpu.

Signed-off-by: shugeo <sgazeos@gmail.com>

* Eliminated waste implementations.

Signed-off-by: shugeo <sgazeos@gmail.com>

* - make offset calculation faster in t<> methods

Signed-off-by: Yurii <iuriish@yahoo.com>

* - rename refference T& NDArray::t<> method

Signed-off-by: Yurii <iuriish@yahoo.com>

* - further work on cuda sqrtm

Signed-off-by: Yurii <iuriish@yahoo.com>

* - provide correct synchronization to device in Sqrtm class

Signed-off-by: Yurii <iuriish@yahoo.com>

* - add tests for sqrtm op

Signed-off-by: Yurii <iuriish@yahoo.com>

* - correct fails which appeared while testing on jenkins

Signed-off-by: Yurii <iuriish@yahoo.com>

* - trying to find out mistake in svd::deflation method

Signed-off-by: Yurii <iuriish@yahoo.com>

* Revert "- trying to find out mistake in svd::deflation method"

This reverts commit 19d37baddbc509028e4bc67bc932fe7449becdb6.

* Revert "- trying to find out mistake in svd::deflation method"

This reverts commit 19d37baddbc509028e4bc67bc932fe7449becdb6.

Signed-off-by: Yurii <iuriish@yahoo.com>

* - change call semantic of r<> and t<> methods

Signed-off-by: Yurii <iuriish@yahoo.com>

* - ged rid of ambiguity in * operator overloads for windows buikd

Signed-off-by: Yurii <iuriish@yahoo.com>

* - get rid of ambiguity in * operator overloads for windows build 2

Signed-off-by: Yurii <iuriish@yahoo.com>

* - get rid of ambiguity in * operator overloads for windows build 3

Signed-off-by: Yurii <iuriish@yahoo.com>

* - resolve conflicts with master

Signed-off-by: Yurii <iuriish@yahoo.com>

* cmakelists updated

Signed-off-by: raver119@gmail.com <raver119@gmail.com>

* - minor fix in merge cpu helper - make use of reference getter

Signed-off-by: Yurii <iuriish@yahoo.com>

Co-authored-by: raver119 <raver119@gmail.com>
Co-authored-by: shugeo <sgazeos@gmail.com>
2020-05-14 18:06:13 +03:00

214 lines
9.1 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*******************************************************************************
* Copyright (c) 2019 Konduit K.K.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author sgazeos@gmail.com
//
#include <ops/declarable/helpers/random.h>
//#include <vector>
#include <memory>
//#include <graph/Context.h>
#include <helpers/ShapeUtils.h>
#include <helpers/RandomLauncher.h>
#include <execution/Threads.h>
#include <helpers/ConstantTadHelper.h>
namespace sd {
namespace ops {
namespace helpers {
template <typename T>
void fillRandomGamma_(LaunchContext* context, graph::RandomGenerator& rng, NDArray* alpha, NDArray* beta, NDArray* output) {
auto broadcasted = alpha->shapeInfo();
if (beta != nullptr) {
const Nd4jLong* broadcastedShape = nullptr;
ShapeUtils::evalBroadcastShapeInfo(*alpha, *beta, true, broadcastedShape, context->getWorkspace());
broadcasted = broadcastedShape;
}
auto step = shape::length(broadcasted);
auto shift = output->lengthOf() / step;
auto copyAlpha = alpha;
auto copyBeta = beta;
if (beta != nullptr) {
NDArray alphaBroadcasted(broadcasted, alpha->dataType(), false, context);
NDArray betaBroadcasted(broadcasted, beta->dataType(), false, context);
copyAlpha = new NDArray(alphaBroadcasted.applyTrueBroadcast(BroadcastOpsTuple::Assign(), *alpha));
copyBeta = new NDArray(betaBroadcasted.applyTrueBroadcast(BroadcastOpsTuple::Assign(), *beta));
}
// bool directAlpha = alpha->ews() == 1 && alpha->ordering() == 'c';
bool directOutput = output->ews() == 1 && output->ordering() == 'c';
T* outputBuf = output->dataBuffer()->primaryAsT<T>();
PRAGMA_OMP_PARALLEL_FOR
for (Nd4jLong k = 0; k < shift; k++) {
auto pos = k * step;
auto u = rng.relativeT<T>(k, 0., 1.);
for (Nd4jLong e = 0; e < step; e++)
if (directOutput) {
outputBuf[pos + e] = math::nd4j_igamma<T, T, T>(copyAlpha->t<T>(e),
beta != nullptr ? copyBeta->t<T>(e) * u : u);
}
else {
output->r<T>(pos + e) = math::nd4j_igamma<T, T, T>(copyAlpha->t<T>(e),
beta != nullptr ? copyBeta->t<T>(e) * u : u);
}
}
if (beta != nullptr) {
delete copyAlpha;
delete copyBeta;
//delete broadcasted;
}
}
void fillRandomGamma(LaunchContext* context, graph::RandomGenerator& rng, NDArray* alpha, NDArray* beta, NDArray* output) {
BUILD_SINGLE_SELECTOR(output->dataType(), fillRandomGamma_, (context, rng, alpha, beta, output), FLOAT_NATIVE);
}
BUILD_SINGLE_TEMPLATE(template void fillRandomGamma_, (LaunchContext* context,
graph::RandomGenerator& rng, NDArray* alpha, NDArray* beta, NDArray* output), FLOAT_NATIVE);
/*
* algorithm Poisson generator based upon the inversion by sequential search:[48]:505
init:
Let x ← 0, p ← eλ, s ← p.
Generate uniform random number u in [0,1].
while u > s do:
x ← x + 1.
p ← p * λ / x.
s ← s + p.
return x.
* */
template <typename T>
void fillRandomPoisson_(LaunchContext* context, graph::RandomGenerator& rng, NDArray* lambda, NDArray* output) {
auto shift = output->lengthOf() / lambda->lengthOf();
auto step = lambda->lengthOf();
T* lambdaBuf = lambda->dataBuffer()->primaryAsT<T>();
T* outputBuf = output->dataBuffer()->primaryAsT<T>();
bool directLa = lambda->ews() == 1 && lambda->ordering() == 'c';
bool directOut = output->ews() == 1 && output->ordering() == 'c';
PRAGMA_OMP_PARALLEL_FOR
for (Nd4jLong k = 0; k < shift; k++) {
auto pos = k * step;
auto u = rng.relativeT<T>(k, 0., 1.);
for (Nd4jLong e = 0; e < step; e++) {
auto p = math::nd4j_exp<T, T>(-lambda->t<T>(e));
auto s = p;
auto x = T(0.f);
while (u > s) {
x += 1.f;
p *= directLa?lambdaBuf[e]/x:lambda->t<T>(e) / x;
s += p;
}
if (directOut)
outputBuf[pos + e] = x;
else
output->r<T>(pos + e) = x;
}
}
}
void fillRandomPoisson(LaunchContext* context, graph::RandomGenerator& rng, NDArray* lambda, NDArray* output) {
BUILD_SINGLE_SELECTOR(output->dataType(), fillRandomPoisson_, (context, rng, lambda, output), FLOAT_NATIVE);
}
BUILD_SINGLE_TEMPLATE(template void fillRandomPoisson_, (LaunchContext* context,
graph::RandomGenerator& rng, NDArray* lambda, NDArray* output), FLOAT_TYPES);
template <typename T>
void fillRandomUniform_(LaunchContext* context, graph::RandomGenerator& rng, NDArray* min, NDArray* max, NDArray* output) {
T minVal = T(0);
T maxVal = DataTypeUtils::max<T>();
if (min)
minVal = min->t<T>(0);
if (max)
maxVal = max->t<T>(0);
if (output->isR())
RandomLauncher::fillUniform(context, rng, output, minVal, maxVal);
else {
PRAGMA_OMP_PARALLEL_FOR
for (Nd4jLong i = 0; i < output->lengthOf(); i++) {
output->r<T>(i) = rng.relativeT<T>(i, minVal, maxVal);
}
}
}
void fillRandomUniform(LaunchContext* context, graph::RandomGenerator& rng, NDArray* min, NDArray* max, NDArray* output) {
BUILD_SINGLE_SELECTOR(output->dataType(), fillRandomUniform_, (context, rng, min, max, output), NUMERIC_TYPES);
}
// used https://en.wikipedia.org/wiki/Categorical_distribution
// methods: gumbel trick + softmax + argmax
template <typename Tx, typename Tz>
void fillRandomMultiNomial_(LaunchContext* context, graph::RandomGenerator& rng, NDArray& input, NDArray& output, const Nd4jLong numOfSamples, const int dimC) {
const Tx* x = input.bufferAsT<Tx>();
Tz* z = output.bufferAsT<Tz>();
Tx minVal = DataTypeUtils::min<Tx>();
Tx maxVal = 1.0;
auto dimA = (0 == dimC) ? 1 : 0;
const Nd4jLong batchValue = output.sizeAt(dimC);
const Nd4jLong numOfClassX = input.sizeAt(dimA);
const Nd4jLong zDimAstride = output.stridesOf()[dimA];
const Nd4jLong xDimAstride = input.stridesOf()[dimA];
const Nd4jLong zDimCstride = output.stridesOf()[dimC];
const Nd4jLong xDimCstride = input.stridesOf()[dimC];
auto func = PRAGMA_THREADS_FOR_2D{
for (auto nBatchIndex = start_x; nBatchIndex < stop_x; nBatchIndex += inc_x) {
for (auto nSampleIndexInBatch = start_y; nSampleIndexInBatch < stop_y; nSampleIndexInBatch += inc_y) {
const Tx* xTad = x + (nBatchIndex * xDimCstride);
Tz* zTad = z + (nBatchIndex * zDimCstride);
Tz& arg = zTad[nSampleIndexInBatch * zDimAstride];
Tx Max = -minVal;
auto nSamplesPerBatch = nBatchIndex * numOfClassX * numOfSamples;
auto nClassesPerSample = nSampleIndexInBatch * numOfClassX;
for (Nd4jLong nClass = 0; nClass < numOfClassX; nClass += 1) {
auto nIndex = nSamplesPerBatch + nClassesPerSample + nClass;
auto unifornLog = sd::math::nd4j_log<Tx, Tx>(-sd::math::nd4j_log<Tx, Tx>(rng.relativeT<Tx>(nIndex, minVal, maxVal)));
Tx tValue = (xTad[nClass * xDimAstride] - unifornLog);
if (tValue > Max) {
Max = tValue;
arg = nClass;
}
}
}
}
};
samediff::Threads::parallel_for(func, 0, batchValue, 1, 0, numOfSamples, 1);
rng.rewindH(output.lengthOf()*numOfClassX);
return;
}
void fillRandomMultiNomial(LaunchContext* context, graph::RandomGenerator& rng, NDArray& input, NDArray& output, const Nd4jLong numOfSamples, const int dimC) {
BUILD_DOUBLE_SELECTOR(input.dataType(), output.dataType(), fillRandomMultiNomial_, (context, rng, input, output, numOfSamples, dimC), FLOAT_TYPES, INDEXING_TYPES);
}
}
}
}