cavis/contrib/attic/pydl4j
agibsonccc c715aea405 Update LICENSE 2021-02-01 17:47:29 +09:00
..
pydl4j Update LICENSE 2021-02-01 17:47:29 +09:00
tests Update LICENSE 2021-02-01 17:47:29 +09:00
.gitignore Dev commits 2021-02-01 14:31:20 +09:00
README.md Dev commits 2021-02-01 14:31:20 +09:00
pom.xml Update LICENSE 2021-02-01 17:47:29 +09:00
pytest.ini Dev commits 2021-02-01 14:31:20 +09:00
release.sh Update LICENSE 2021-02-01 17:47:29 +09:00
setup.py Update LICENSE 2021-02-01 17:47:29 +09:00

README.md

PyDL4J - Java dependency management for Python applications

Join the chat at https://gitter.im/deeplearning4j/deeplearning4j PyPI version

PyDL4J is a lightweight package manager for the DL4J ecosystem which allows you to focus on building Python applications on top of pyjnius without worrying about the details. You can use PyDL4J for the following tasks:

  • Automatically manage JARs for your Python projects, such as jumpy or pydatavec.
  • Configure your Python DL4J environment through the PyDL4J command line interface,
  • Use PyDL4J as a replacement for Maven for basic tasks, from Python.

Installation

PyDL4J is on PyPI, so you can install it with pip:

pip install pydl4j

Alternatively, you can build the project locally as follows:

git clone https://www.github.com/eclipse/deeplearning4j.git
cd deeplearning4j/pydl4j
python setup.py install

As regular user, this will likely be enough for your needs. In fact, most of the time you will not interact with PyDL4J directly at all. All other Python projects maintained by Skymind use PyDL4J under the hood and will install this dependency for you.

PyDL4J command line interface (CLI)

Installing PyDL4J exposes a command line tool called pydl4j. You can use this tool to configure your PyDL4J environment. If you don't use the CLI, a default configuration will be used instead.

Note: If you intend to use the CLI, make sure to have docker installed on your machine.

To initialize a new PyDL4J configuration, type

pydl4j init


██████╗ ██╗   ██╗██████╗ ██╗██╗  ██╗     ██╗
██╔══██╗╚██╗ ██╔╝██╔══██╗██║██║  ██║     ██║
██████╔╝ ╚████╔╝ ██║  ██║██║███████║     ██║
██╔═══╝   ╚██╔╝  ██║  ██║██║╚════██║██   ██║
██║        ██║   ██████╔╝███████╗██║╚█████╔╝
╚═╝        ╚═╝   ╚═════╝ ╚══════╝╚═╝ ╚════╝

pydl4j is a system to manage your DL4J dependencies from Python!

Which DL4J version do you want to use for your Python projects? (default '1.0.0-beta2'):

Follow the instructions provided by the CLI. At the end of this process you'll see a JSON object carrying your configuration.

This is your current settings file config.json:

{
    "dl4j_core": true,
    "nd4j_backend": "cpu",
    "spark_version": "2",
    "datavec": false,
    "spark": true,
    "scala_version": "2.11",
    "dl4j_version": "1.0.0-beta2"
}

Does this look good? (default 'y')[y/n]:

If not configured otherwise, this configuration file will be stored at ~/.deeplearning4j/pydl4j/config.json. This configuration file is a lightweight version for Python users to avoid the cognitive load of the widely used Project Object Model (POM) widely used in Java. PyDL4J will translate your configuration into the right format internally to provide you with the tools you need.

Finally, to install the Java dependencies configured in your config.json you use the following command:

pydl4j install

This tool will install all necessary JARs into ~/.deeplearning4j/pydl4j for you, by running mvn in a Docker container, and setting your classpath so that your pyjnius Python applications can access them.

PyDL4J API

Example

import pydl4j
import jnius_config
from pydl4j import mvn

pydl4j.set_context('my_python_app_name')

# Fetch latest version of datavec.datavec-api from Maven central
pydl4j.mvn_install(group='datavec', artifact='datavec-api')

# Or fetch a specific version:
pydl4j.mvn_install(group='datavec', artifact='datavec-api',
                   version='1.0.0-beta')

jnius_config.set_classpath(pydl4j.get_dir())

List all artifacts in a group

mvn.get_artifacts(group_id)

Example

mvn.get_artifacts('datavec')
['datavec-api', 'datavec-arrow', 'datavec-camel', 'datavec-cli', 'datavec-data', 'datavec-data-audio', 'datavec-data-codec', 'datavec-d
 ata-image', 'datavec-data-nlp', 'datavec-dataframe', 'datavec-excel', 'datavec-geo', 'datavec-hadoop', 'datavec-jdbc', 'datavec-local',
 'datavec-nd4j-common', 'datavec-parent', 'datavec-perf', 'datavec-spark-inference-client', 'datavec-spark-inference-model', 'datavec-s
 park-inference-parent', 'datavec-spark-inference-server_2.10', 'datavec-spark-inference-server_2.11', 'datavec-spark_2.10', 'datavec-sp
 ark_2.11']

List all versions of an artifact

mvn.get_versions(group_id, artifact_id)

Example

mvn.get_versions('datavec', 'datavec-api')
['0.4.0', '0.5.0', '0.6.0', '0.7.0', '0.7.1', '0.7.2', '0.8.0',
    '0.9.0', '0.9.1', '1.0.0-alpha', '1.0.0-beta', '1.0.0-beta2']

Get latest version of an artifact

mvn.get_latest_version(group_id, artifact_id)

Example

mvn.get_latest_version('datavec', 'datavec-api')
'1.0.0-beta2'

List all installed jars

pydl4j.get_jars()

Uninstall a jar

# Find jar name from pydl4j.get_jars()
pydl4j.uninstall(jar_name)

Uninstall all jars:

pydl4j.clear_context()