cavis/libnd4j/tests_cpu/layers_tests/DeclarableOpsTests19.cpp

428 lines
12 KiB
C++

/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
//
// @author raver119@gmail.com
//
#include "testlayers.h"
#include <ops/declarable/CustomOperations.h>
#include <array/NDArray.h>
#include <ops/ops.h>
#include <helpers/GradCheck.h>
#include <array>
#include <helpers/RandomLauncher.h>
using namespace sd;
class DeclarableOpsTests19 : public testing::Test {
public:
DeclarableOpsTests19() {
printf("\n");
fflush(stdout);
}
};
TEST_F(DeclarableOpsTests19, test_argmax_maxint_vector_1) {
auto x = NDArrayFactory::create<float>('c', {3}, {0.1f, 0.5f, 0.7f});
auto z = NDArrayFactory::create<Nd4jLong>(0);
auto e = NDArrayFactory::create<Nd4jLong>(2);
sd::ops::argmax op;
auto status = op.execute({&x}, {&z}, {DataTypeUtils::max<int>()});
ASSERT_EQ(Status::OK(), status);
ASSERT_EQ(e, z);
}
TEST_F(DeclarableOpsTests19, test_threshold_encode_1) {
auto x = NDArrayFactory::create<double>('c', {3}, {1.5, 2.5, -3.5});
auto exp_encoded = NDArrayFactory::create<int>('c', {7}, {3, 3, 1056964608, 0, 1, 2, -3});
auto exp_gradients = NDArrayFactory::create<double>('c', {3}, {1.0, 2.0, -3.0});
sd::ops::encode_threshold op;
auto result = op.evaluate({&x}, {0.5});
auto gradients = result.at(0);
auto encoded = result.at(1);
//encoded->printIndexedBuffer("ENC");
ASSERT_EQ(exp_encoded, *encoded);
ASSERT_EQ(exp_gradients, x);
// FIXME: we need to add a way to declare individual inplace outputs
//ASSERT_EQ(exp_gradients, *gradients);
}
TEST_F(DeclarableOpsTests19, test_threshold_encode_2) {
for (int length = 5; length < 35; length++) {
auto x = NDArrayFactory::create<double>('c', {10000});
auto exp_gradients = NDArrayFactory::create<double>('c', {10000});
for (int e = 0; e < length; e++) {
x.p(e, 2e-3);
exp_gradients.p(e, 1e-3);
}
sd::ops::encode_threshold op;
auto result = op.evaluate({&x}, {1e-3});
auto encoded = result.at(1);
ASSERT_EQ(length + 4, encoded->lengthOf());
ASSERT_EQ(exp_gradients, x);
}
}
TEST_F(DeclarableOpsTests19, test_threshold_encode_boundary_1) {
auto x = NDArrayFactory::create<float>('c', {6});
x = 1.0f;
sd::ops::encode_threshold op;
auto result = op.evaluate({&x}, {1.0}, {3});
auto gradients = result.at(0);
auto encoded = result.at(1);
ASSERT_EQ(7, encoded->lengthOf());
ASSERT_EQ(3, x.sumNumber().e<int>(0));
}
TEST_F(DeclarableOpsTests19, test_threshold_encode_boundary_2) {
auto x = NDArrayFactory::create<float>('c', {1000});
x = 1.0f;
sd::ops::encode_threshold op;
auto result = op.evaluate({&x}, {1.0}, {100});
auto gradients = result.at(0);
auto encoded = result.at(1);
ASSERT_EQ(104, encoded->lengthOf());
ASSERT_EQ(900, x.sumNumber().e<int>(0));
}
TEST_F(DeclarableOpsTests19, test_threshold_decode_1) {
auto x = NDArrayFactory::create<double>('c', {3}, {1.0, 2.0, -3.0});
auto y = NDArrayFactory::create<int>('c', {7}, {3, 3, 1056964608, 0, 1, 2, -3});
auto exp_gradients = NDArrayFactory::create<double>('c', {3}, {1.5, 2.5, -3.5});
sd::ops::decode_threshold op;
auto status = op.execute({&x, &y}, {&x});
ASSERT_EQ(Status::OK(), status);
ASSERT_EQ(exp_gradients, x);
}
TEST_F(DeclarableOpsTests19, test_bitmap_encode_1) {
auto initial = NDArrayFactory::create<float>('c', {6}, {0.0f, 0.0f, 1e-3f, -1e-3f, 0.0f, 0.0f});
auto exp_0 = initial.like();
auto exp_1 = initial.dup();
auto exp_c = NDArrayFactory::create<int>(2L);
sd::ops::encode_bitmap enc;
auto enc_result = enc.evaluate({&initial}, {1e-3f});
ASSERT_EQ(Status::OK(), enc_result.status());
//initial.printIndexedBuffer("initial");
ASSERT_EQ(exp_0, initial);
auto encoded = enc_result.at(1);
auto counter = enc_result.at(2);
//encoded->printIndexedBuffer("encoded");
ASSERT_EQ(exp_c, *counter);
sd::ops::decode_bitmap dec;
auto status = dec.execute({&initial, encoded}, {&initial});
ASSERT_EQ(Status::OK(), status);
//initial.printIndexedBuffer();
ASSERT_EQ(exp_1, initial);
}
TEST_F(DeclarableOpsTests19, test_bitmap_encode_decode) {
auto initial = NDArrayFactory::create<float>('c', {256000});
initial = 1.0f;
auto exp = initial.dup();
auto neg = initial.like();
neg = 0.5f;
sd::ops::encode_bitmap enc;
auto enc_result = enc.evaluate({&initial}, {0.5f});
auto encoded = enc_result.at(1);
// checking equality of all encoded bits
for (int e = 5; e < encoded->lengthOf() - 1; e++) {
if (encoded->e<int>(e) != encoded->e<int>(e - 1))
nd4j_printf("Non equal encoded values at E[%i]: %i;\n", e, encoded->e<int>(e));
}
ASSERT_NE(exp, initial);
ASSERT_EQ(neg, initial);
sd::ops::decode_bitmap dec;
auto status = dec.execute({&initial, encoded}, {&initial});
ASSERT_EQ(Status::OK(), status);
// checking equality of all dedoded bits
for (int e = 0; e < initial.lengthOf(); e++) {
auto f = initial.e<float>(e);
if (f != 1.0f)
nd4j_printf("initial[%i] = %f\n", e, f);
}
ASSERT_EQ(exp, initial);
}
TEST_F(DeclarableOpsTests19, test_threshold_encode_decode) {
auto initial = NDArrayFactory::create<float>('c', {256000});
initial = 1.0f;
auto exp = initial.dup();
auto neg = initial.like();
neg = 0.5f;
sd::ops::encode_threshold enc;
auto enc_result = enc.evaluate({&initial}, {0.5f});
auto encoded = enc_result.at(1);
ASSERT_EQ(256000 + 4, encoded->lengthOf());
ASSERT_NE(exp, initial);
for (int e = 0; e < initial.lengthOf(); e++) {
auto f = initial.e<float>(e);
if (f != 0.5f) {
nd4j_printf("initial[%i] = %f\n", e, f);
throw std::runtime_error("");
}
}
ASSERT_EQ(neg, initial);
// checking equality of all encoded bits
//for (int e = 5; e < encoded->lengthOf() - 1; e++) {
//if (encoded->e<int>(e) != encoded->e<int>(e - 1) + 1)
//nd4j_printf("Non equal encoded values at E[%i]: %i;\n", e, encoded->e<int>(e));
//}
sd::ops::decode_threshold dec;
auto status = dec.execute({&initial, encoded}, {&initial});
ASSERT_EQ(Status::OK(), status);
// checking equality of all dedoded bits
for (int e = 0; e < initial.lengthOf(); e++) {
auto f = initial.e<float>(e);
if (f != 1.0f)
nd4j_printf("initial[%i] = %f\n", e, f);
}
ASSERT_EQ(exp, initial);
}
#ifdef _RELEASE
TEST_F(DeclarableOpsTests19, test_threshold_encode_decode_2) {
// [2,1,135079944,1,1,8192,1,99]
constexpr int sizeX= 10*1000*1000;
auto initial = NDArrayFactory::create<float>('c', {1, sizeX});
initial = 1.0f;
auto exp = initial.dup();
auto neg = initial.like();
neg = 0.5f;
sd::ops::encode_threshold enc;
auto enc_result = enc.evaluate({&initial}, {0.5f});
auto encoded = enc_result.at(1);
ASSERT_EQ(sizeX + 4, encoded->lengthOf());
ASSERT_NE(exp, initial);
/*
for (int e = 0; e < initial.lengthOf(); e++) {
auto f = initial.e<float>(e);
if (f != 0.5f) {
nd4j_printf("initial[%i] = %f\n", e, f);
throw std::runtime_error("");
}
}
*/
ASSERT_EQ(neg, initial);
// checking equality of all encoded bits
//for (int e = 5; e < encoded->lengthOf() - 1; e++) {
//if (encoded->e<int>(e) != encoded->e<int>(e - 1) + 1)
//nd4j_printf("Non equal encoded values at E[%i]: %i;\n", e, encoded->e<int>(e));
//}
sd::ops::decode_threshold dec;
auto status = dec.execute({&initial, encoded}, {&initial});
ASSERT_EQ(Status::OK(), status);
// checking equality of all dedoded bits
/*
for (int e = 0; e < initial.lengthOf(); e++) {
auto f = initial.e<float>(e);
if (f != 1.0f)
nd4j_printf("initial[%i] = %f\n", e, f);
}
*/
ASSERT_EQ(exp, initial);
}
#endif
TEST_F(DeclarableOpsTests19, test_matmul_ccc) {
auto x = NDArrayFactory::create<float>('c', {10, 10});
auto y = NDArrayFactory::create<float>('c', {10, 10});
auto e = NDArrayFactory::create<float>('c', {10, 10});
auto z = NDArrayFactory::create<float>('c', {10, 10});
z.assign(100.f);
e.assign(110.f);
x.assign(1.0f);
y.assign(1.0f);
sd::ops::matmul op;
auto status = op.execute({&x, &y}, {&z}, {1.0, 1.0});
ASSERT_EQ(Status::OK(), status);
ASSERT_EQ(e, z);
}
TEST_F(DeclarableOpsTests19, test_matmul_fcf) {
auto x = NDArrayFactory::create<float>('f', {10, 10});
auto y = NDArrayFactory::create<float>('c', {10, 10});
auto e = NDArrayFactory::create<float>('f', {10, 10});
auto z = NDArrayFactory::create<float>('f', {10, 10});
z.assign(100.f);
e.assign(110.f);
x.assign(1.0f);
y.assign(1.0f);
sd::ops::matmul op;
auto status = op.execute({&x, &y}, {&z}, {1.0, 1.0});
ASSERT_EQ(Status::OK(), status);
ASSERT_EQ(e, z);
}
TEST_F(DeclarableOpsTests19, test_matmul_cff) {
auto x = NDArrayFactory::create<float>('c', {10, 10});
auto y = NDArrayFactory::create<float>('f', {10, 10});
auto e = NDArrayFactory::create<float>('f', {10, 10});
auto z = NDArrayFactory::create<float>('f', {10, 10});
z.assign(100.f);
e.assign(110.f);
x.assign(1.0f);
y.assign(1.0f);
sd::ops::matmul op;
auto status = op.execute({&x, &y}, {&z}, {1.0, 1.0});
ASSERT_EQ(Status::OK(), status);
ASSERT_EQ(e, z);
}
TEST_F(DeclarableOpsTests19, test_matmul_ccf) {
auto x = NDArrayFactory::create<float>('c', {10, 10});
auto y = NDArrayFactory::create<float>('c', {10, 10});
auto e = NDArrayFactory::create<float>('f', {10, 10});
auto z = NDArrayFactory::create<float>('f', {10, 10});
z.assign(100.f);
e.assign(110.f);
x.assign(1.0f);
y.assign(1.0f);
sd::ops::matmul op;
auto status = op.execute({&x, &y}, {&z}, {1.0, 1.0});
ASSERT_EQ(Status::OK(), status);
ASSERT_EQ(e, z);
}
TEST_F(DeclarableOpsTests19, test_matmul_fff) {
auto x = NDArrayFactory::create<float>('f', {10, 10});
auto y = NDArrayFactory::create<float>('f', {10, 10});
auto e = NDArrayFactory::create<float>('f', {10, 10});
auto z = NDArrayFactory::create<float>('f', {10, 10});
z.assign(100.f);
e.assign(110.f);
x.assign(1.0f);
y.assign(1.0f);
sd::ops::matmul op;
auto status = op.execute({&x, &y}, {&z}, {1.0, 1.0});
ASSERT_EQ(Status::OK(), status);
ASSERT_EQ(e, z);
}
TEST_F(DeclarableOpsTests19, test_conv1d_bp_1) {
/*
DynamicCustomOp op = DynamicCustomOp.builder("conv1d_bp")
.addInputs(
Nd4j.create(DataType.FLOAT, 2,2,12),
Nd4j.create(DataType.FLOAT, 3,2,3),
Nd4j.create(DataType.FLOAT, 2,3,6)
)
.addOutputs(
Nd4j.create(DataType.FLOAT, 2,2,12),
Nd4j.create(DataType.FLOAT, 3,2,3))
.addIntegerArguments(3,2,0,1,2,0)
.build();
Nd4j.exec(op);
*/
auto t = NDArrayFactory::create<float>('c', {2, 2, 12});
auto u = NDArrayFactory::create<float>('c', {3, 2, 3});
auto v = NDArrayFactory::create<float>('c', {2, 3, 6});
sd::ops::conv1d_bp op;
auto result = op.evaluate({&t, &u, &v}, {3, 2, 0, 1, 2,0});
ASSERT_EQ(Status::OK(), result.status());
}
TEST_F(DeclarableOpsTests19, test_squeeze_1) {
auto x = NDArrayFactory::create<double>('c', {3, 4, 1});
auto e = NDArrayFactory::create<double>('c', {3, 4});
int axis = 2;
sd::ops::squeeze op;
auto status = op.execute({&x}, {&e}, {axis});
ASSERT_EQ(Status::OK(), status);
}