Yurii Shyrma fe47f52896
Oleh tenzor mmul (#231)
* Libnd4j: TensorMMul backprop op #8174, raw implementation

Signed-off-by: Oleg <oleg.semeniv@gmail.com>

* Libnd4j: TensorMMul backprop op #8174 merge master and some corrections

Signed-off-by: Oleg <oleg.semeniv@gmail.com>

* Libnd4j: TensorMMul backprop op #8174 algorithm update, need testing, sync with  master

* Libnd4j: TensorMMul backprop op #8174 fixed incorrect B axes calculation

Signed-off-by: Oleg <oleg.semeniv@gmail.com>

* Libnd4j: TensorMMul backprop op #8174 optimize axes identification and fix bug of indeces overlapping, added first test. need testing with different shapes

Signed-off-by: Oleg <oleg.semeniv@gmail.com>

* Libnd4j: TensorMMul backprop op #8174 some fixes and improvements need more testing

Signed-off-by: Oleg <oleg.semeniv@gmail.com>

* Libnd4j: TensorMMul backprop op #8174 fixed order of matrix multiply

Signed-off-by: Oleg <oleg.semeniv@gmail.com>

* Libnd4j: TensorMMul backprop op #8174 fixed issue of incorrect axes definition, add tests based on TF, need additional testing for case dLdC not equal 1

Signed-off-by: Oleg <oleg.semeniv@gmail.com>

* Libnd4j: TensorMMul backprop op #8174 fixed scalar case add test

Signed-off-by: Oleg <oleg.semeniv@gmail.com>

* Libnd4j: TensorMMul backprop op #8174 fixed bp algorithm, axes definition, need some mode testing with different orders combination f,c; c,f f,f and add some checks for inputs

Signed-off-by: Oleg <oleg.semeniv@gmail.com>

* Libnd4j: TensorMMul backprop op #8174 some checks and corrections added tests, exists the problem with different input orders support A-f B-c and A-f B-f

Signed-off-by: Oleg <oleg.semeniv@gmail.com>

* Libnd4j: TensorMMul backprop op #8174 sync master

Signed-off-by: Oleg <oleg.semeniv@gmail.com>

* - correct bug in MmulHelper::tensorDot(a, b, c, axes_a, axes_b,permutForC)

Signed-off-by: Yurii <iuriish@yahoo.com>

* Libnd4j: TensorMMul backprop op #8174 code clean up and refactoring

Signed-off-by: Oleg <oleg.semeniv@gmail.com>

* - add check for linspase ordered permutations in ShapeUtils::evalShapeForTensorDot

Signed-off-by: Yurii <iuriish@yahoo.com>

* - provide additional code in shape::reshape stuff in order to reduce amount of allocation/copy operations during reshaping procedure

Signed-off-by: Yurii <iuriish@yahoo.com>

* - further work on problem of wrong shape evaluation during permute/reshape procedures

Signed-off-by: Yurii <iuriish@yahoo.com>

* - still looking for bug reason in reshape/permute stuff

Signed-off-by: Yurii <iuriish@yahoo.com>

* - correct bug in transform cuda native ops

Signed-off-by: Yurii <iuriish@yahoo.com>

* - correct bug in NDArray::assign

Signed-off-by: Yurii <iuriish@yahoo.com>

* - remove old shape::reshape stuff

Signed-off-by: Yurii <iuriish@yahoo.com>

* - add possibility to disable copy of old buffer to new buffer during reshape operation in NDArray class

Signed-off-by: Yurii <iuriish@yahoo.com>

* - correct bug in tensorDot which had to do with wrong pointers assigments

Signed-off-by: Yurii <iuriish@yahoo.com>

Co-authored-by: Oleh <oleg.semeniv@gmail.com>
2020-02-13 20:33:54 +03:00

86 lines
2.8 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include <ops/declarable/helpers/helpers.h>
#include <execution/Threads.h>
namespace nd4j {
namespace ops {
namespace helpers {
void crossBatched(nd4j::LaunchContext * context, NDArray *a, NDArray *b, NDArray *o);
void FORCEINLINE cross(nd4j::LaunchContext * context, NDArray *a, NDArray *b, NDArray *o) {
if (a->isR()) {
auto a0 = a->e<double>(0);
auto a1 = a->e<double>(1);
auto a2 = a->e<double>(2);
auto b0 = b->e<double>(0);
auto b1 = b->e<double>(1);
auto b2 = b->e<double>(2);
o->p(Nd4jLong(0L), a1 * b2 - a2 * b1);
o->p(1L, a2 * b0 - a0 * b2);
o->p(2L, a0 * b1 - a1 * b0);
} else {
auto a0 = a->e<Nd4jLong>(0);
auto a1 = a->e<Nd4jLong>(1);
auto a2 = a->e<Nd4jLong>(2);
auto b0 = b->e<Nd4jLong>(0);
auto b1 = b->e<Nd4jLong>(1);
auto b2 = b->e<Nd4jLong>(2);
o->p(Nd4jLong(0L), a1 * b2 - a2 * b1);
o->p(1L, a2 * b0 - a0 * b2);
o->p(2L, a0 * b1 - a1 * b0);
}
}
void FORCEINLINE _crossBatched(nd4j::LaunchContext * context, NDArray *a, NDArray *b, NDArray *o) {
auto a_ = a->reshape(a->ordering(), {-1, 3});
auto b_ = b->reshape(b->ordering(), {-1, 3});
auto o_ = o->reshape(o->ordering(), {-1, 3}, false);
auto tadsA = a_.allTensorsAlongDimension({1});
auto tadsB = b_.allTensorsAlongDimension({1});
auto tadsO = o_.allTensorsAlongDimension({1});
int tads = tadsA.size();
auto func = PRAGMA_THREADS_FOR {
for (auto e = start; e < stop; e += increment) {
auto a_ = tadsA.at(e);
auto b_ = tadsB.at(e);
auto o_ = tadsO.at(e);
helpers::cross(context, a_, b_, o_);
}
};
samediff::Threads::parallel_tad(func, 0, tads);
}
void weightedCrossEntropyWithLogitsFunctor(nd4j::LaunchContext * context, NDArray const* targets, NDArray const* input, NDArray const* weights, NDArray* output);
}
}
}