cavis/libnd4j/include/ops/declarable/generic/loss/ctcLoss.cpp

135 lines
6.2 KiB
C++

/*******************************************************************************
* Copyright (c) 2021 Deeplearning4j Contributors
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
*******************************************************************************/
//
// @author AbdelRauf
//
#include <system/op_boilerplate.h>
#include <ops/declarable/CustomOperations.h>
#include <ops/declarable/helpers/ctcLoss.h>
namespace sd {
namespace ops {
//////////////////////////////////////////////////////////////////////////
CUSTOM_OP_IMPL(ctc_loss, 4, 1, false, 0, 1) {
auto targetLabels = INPUT_VARIABLE(0);
auto logitInput = INPUT_VARIABLE(1);
auto targetLabelLengths = INPUT_VARIABLE(2);
auto logitInputLengths = INPUT_VARIABLE(3);
auto outputLosses = OUTPUT_VARIABLE(0);
int blankIndex = INT_ARG(0);
REQUIRE_TRUE(targetLabels->rankOf()==2, 0, "CtcLoss: target labels fails to meet rank requirement (batch_size, max_label_sequence_length): %i == 2 ", targetLabels->rankOf());
REQUIRE_TRUE(logitInput->rankOf()==3, 0, "CtcLoss: logit Input fails to meet rank requirement (batch_size, frames, classes): %i == 3 ", logitInput->rankOf());
REQUIRE_TRUE(targetLabelLengths->rankOf()==1, 0, "CtcLoss: target label length fails to meet rank requirement (batch_size): %i == 1 ", targetLabelLengths->rankOf());
REQUIRE_TRUE(logitInputLengths->rankOf()==1, 0, "CtcLoss: logit Input lengths fails to meet rank requirement (batch_size): %i == 1 ", logitInputLengths->rankOf());
int batchSize0 = targetLabels->sizeAt(0);
int batchSize1 = logitInput->sizeAt(0);
int batchSize2 = targetLabelLengths->sizeAt(0);
int batchSize3 = logitInputLengths->sizeAt(0);
int batchSize4 = outputLosses->sizeAt(0);
bool check_batches = (batchSize0 == batchSize1) && (batchSize2 == batchSize3);
check_batches = check_batches && (batchSize0 == batchSize4) && (batchSize0 == batchSize2);
REQUIRE_TRUE(check_batches, 0, "CtcLoss: All batch sizes should be equal %i", batchSize0);
REQUIRE_TRUE(outputLosses->isSameShape(targetLabelLengths), 0, "CtcLoss: wrong shape of output array, expected is %s but got %s instead !", ShapeUtils::shapeAsString(targetLabelLengths).c_str(), ShapeUtils::shapeAsString(outputLosses).c_str());
auto emptyGradients = NDArrayFactory::empty<float>();
sd::ops::helpers::ctcLoss(block, *logitInput, *targetLabels, *logitInputLengths, *targetLabelLengths, *outputLosses, emptyGradients, blankIndex);
return Status::OK();
}
//////////////////////////////////////////////////////////////////////////
DECLARE_TYPES(ctc_loss) {
getOpDescriptor()->setAllowedInputTypes({ALL_INDICES})
->setAllowedInputTypes(1,{ALL_FLOATS})
->setAllowedOutputTypes({ALL_FLOATS});
}
//////////////////////////////////////////////////////////////////////////
DECLARE_SHAPE_FN(ctc_loss) {
auto yShapeInfo = inputShape->at(1);
auto zShapeInfo = inputShape->at(2);
auto dtype = ArrayOptions::dataType(yShapeInfo);
return SHAPELIST(ConstantShapeHelper::getInstance().createShapeInfo(ShapeDescriptor(zShapeInfo, dtype)));
}
//////////////////////////////////////////////////////////////////////////
CUSTOM_OP_IMPL(ctc_loss_grad, 4, 1, false, 0, 1) {
auto targetLabels = INPUT_VARIABLE(0);
auto logitInput = INPUT_VARIABLE(1);
auto targetLabelLengths = INPUT_VARIABLE(2);
auto logitInputLengths = INPUT_VARIABLE(3);
auto outputGradients = OUTPUT_VARIABLE(0);
int blankIndex = INT_ARG(0);
REQUIRE_TRUE(targetLabels->rankOf()==2, 0, "CtcLoss: target labels fails to meet rank requirement (batch_size, max_label_sequence_length): %i == 2 ", targetLabels->rankOf());
REQUIRE_TRUE(logitInput->rankOf()==3, 0, "CtcLoss: logit Input fails to meet rank requirement (batch_size, frames, classes): %i == 3 ", logitInput->rankOf());
REQUIRE_TRUE(targetLabelLengths->rankOf()==1, 0, "CtcLoss: target label length fails to meet rank requirement (batch_size): %i == 1 ", targetLabelLengths->rankOf());
REQUIRE_TRUE(logitInputLengths->rankOf()==1, 0, "CtcLoss: logit Input lengths fails to meet rank requirement (batch_size): %i == 1 ", logitInputLengths->rankOf());
int batchSize0 = targetLabels->sizeAt(0);
int batchSize1 = logitInput->sizeAt(0);
int batchSize2 = targetLabelLengths->sizeAt(0);
int batchSize3 = logitInputLengths->sizeAt(0);
int batchSize4 = outputGradients->sizeAt(0);
bool check_batches = (batchSize0 == batchSize1) && (batchSize2 == batchSize3);
check_batches = check_batches && (batchSize0 == batchSize4) && (batchSize0 == batchSize2);
REQUIRE_TRUE(check_batches, 0, "CtcLoss Gradient: All batch sizes should be equal %i", batchSize0);
REQUIRE_TRUE(outputGradients->isSameShape(logitInput), 0, "CtcLoss Gradient: wrong shape of output array, expected is %s but got %s instead !", ShapeUtils::shapeAsString(logitInput).c_str(), ShapeUtils::shapeAsString(outputGradients).c_str());
auto emptyLoss = NDArrayFactory::empty<float>();
sd::ops::helpers::ctcLoss(block, *logitInput, *targetLabels, *logitInputLengths, *targetLabelLengths, emptyLoss, *outputGradients, blankIndex);
return Status::OK();
}
//////////////////////////////////////////////////////////////////////////
DECLARE_TYPES(ctc_loss_grad) {
getOpDescriptor()->setAllowedInputTypes({ALL_INDICES})
->setAllowedInputTypes(1,{ALL_FLOATS})
->setAllowedOutputTypes({ALL_FLOATS});
}
//////////////////////////////////////////////////////////////////////////
DECLARE_SHAPE_FN(ctc_loss_grad) {
auto yShapeInfo = inputShape->at(1);
auto dtype = ArrayOptions::dataType(yShapeInfo);
return SHAPELIST(ConstantShapeHelper::getInstance().createShapeInfo(ShapeDescriptor(yShapeInfo, dtype)));
}
}
}