* - specifying template instantiation for certain types in float16 and bloat16 Signed-off-by: Yurii <iuriish@yahoo.com> * - polishing bfloat16 and float16 member functions template specialization Signed-off-by: Yurii <iuriish@yahoo.com> * - rewrite and overload array +-*/ scalar and scalar +-*/ arr in NDAray class Signed-off-by: Yurii <iuriish@yahoo.com> * - make corrections which have to do with and rvalue lvalue conversions Signed-off-by: Yurii <iuriish@yahoo.com> * - provide move semantic in NDArray operators array +-/* array Signed-off-by: Yurii <iuriish@yahoo.com> * float16/bfloat16 tweaks Signed-off-by: raver119 <raver119@gmail.com> * one more tweak Signed-off-by: raver119 <raver119@gmail.com> * - make float16 and bfloat16 to compile successfully on cuda Signed-off-by: Yurii <iuriish@yahoo.com> * - do not use resources of view-like arrays when move semantics is applied Signed-off-by: Yurii <iuriish@yahoo.com> * - get rid of pointers in signatures NDArray methods 1 Signed-off-by: Yurii <iuriish@yahoo.com> * - correction of signature of NDArray::dup method Signed-off-by: Yurii <iuriish@yahoo.com> * - correction of signature of NDArray::reduceAlongDimension method Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyIndexReduce and applyTrueBroadcast methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyReduce3 and varianceAlongDimension methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::tensorsAlongDimension and diagonal methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::allTensorsAlongDimension Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::reduceAlongDimension 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyTransform 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyPairwiseTransform 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyBroadcast 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyTrueBroadcast 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyScalar and applyScalarArr Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::lambda methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::reduce3 methods 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of following NDArray methods: add/sub/mul/div row/column and fillAsTriangular Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::tileToShape methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::isShapeSameStrict method Signed-off-by: Yurii <iuriish@yahoo.com> * minor corrections in tests Signed-off-by: Yurii <iuriish@yahoo.com> * - replace reduce op in batchnorm mkldnn Signed-off-by: Yurii <iuriish@yahoo.com> * - add explicit templates instantiations for operator+(NDArray&&. const scalar) Signed-off-by: Yurii <iuriish@yahoo.com> * - corrections of casts in float16/bfloat16 Signed-off-by: Yurii <iuriish@yahoo.com> * - provide move semantics in following NDArray methods: transform, applyTrueBroadcast, transpose, reshape, permute Signed-off-by: Yurii <iuriish@yahoo.com> * - get rid of input array A duplicate in svd cuda op Signed-off-by: Yurii <iuriish@yahoo.com> * - avoid available bug in svd cuda API Signed-off-by: Yurii <iuriish@yahoo.com> * - add temporary global memory buffer in svd cuda when calcUV = false and m != n Signed-off-by: Yurii <iuriish@yahoo.com> * - remove test with blfoat16 type for betainC Signed-off-by: Yurii <iuriish@yahoo.com> * - resolve conflicts after master has been merged in Signed-off-by: Yurii <iuriish@yahoo.com> * - changed type of affected input array in fused_batch_norm Signed-off-by: Yurii <iuriish@yahoo.com> * - add several explicit type castings Signed-off-by: Yurii <iuriish@yahoo.com> * - add ND4J_EXPORT to operators Signed-off-by: Yurii <iuriish@yahoo.com> * - add explicit template types in instantiations of template arithm operators of NDArray class Signed-off-by: Yurii <iuriish@yahoo.com> * - one more test fix Signed-off-by: Yurii <iuriish@yahoo.com> Co-authored-by: raver119 <raver119@gmail.com>
		
			
				
	
	
		
			155 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			155 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*******************************************************************************
 | 
						|
 * Copyright (c) 2015-2018 Skymind, Inc.
 | 
						|
 *
 | 
						|
 * This program and the accompanying materials are made available under the
 | 
						|
 * terms of the Apache License, Version 2.0 which is available at
 | 
						|
 * https://www.apache.org/licenses/LICENSE-2.0.
 | 
						|
 *
 | 
						|
 * Unless required by applicable law or agreed to in writing, software
 | 
						|
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 | 
						|
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 | 
						|
 * License for the specific language governing permissions and limitations
 | 
						|
 * under the License.
 | 
						|
 *
 | 
						|
 * SPDX-License-Identifier: Apache-2.0
 | 
						|
 ******************************************************************************/
 | 
						|
 | 
						|
//
 | 
						|
// Created by raver119 on 29/10/17.
 | 
						|
//
 | 
						|
 | 
						|
#include <op_boilerplate.h>
 | 
						|
#if NOT_EXCLUDED(OP_fused_batch_norm)
 | 
						|
 | 
						|
#include <ops/declarable/CustomOperations.h>
 | 
						|
 | 
						|
namespace nd4j {
 | 
						|
namespace ops {
 | 
						|
 | 
						|
    DECLARE_TYPES(fused_batch_norm) {
 | 
						|
        getOpDescriptor()
 | 
						|
                ->setAllowedInputTypes(nd4j::DataType::ANY)
 | 
						|
                ->setAllowedOutputTypes({ALL_FLOATS});
 | 
						|
    }
 | 
						|
 | 
						|
CUSTOM_OP_IMPL(fused_batch_norm, 3, 3, false, 0, 2) {
 | 
						|
    auto x      = INPUT_VARIABLE(0);                 // [bS,iH,iW,iD] (NHWC) or [bS,iD,iH,iW] (NCHW)
 | 
						|
    auto scale  = INPUT_VARIABLE(1);                 // [iD]
 | 
						|
    auto offset = INPUT_VARIABLE(2);                 // [iD]
 | 
						|
 | 
						|
    auto y = OUTPUT_VARIABLE(0);                     // [bS,iH,iW,iD] (NHWC) or [bS,iD,iH,iW] (NCHW)
 | 
						|
    auto batchMean = OUTPUT_VARIABLE(1);             // [iD]
 | 
						|
    auto batchVar  = OUTPUT_VARIABLE(2);             // [iD]
 | 
						|
 | 
						|
    const bool dataFormat = (bool)INT_ARG(0);               // 0->NHWC, 1->NCHW
 | 
						|
    const bool isTraining = (bool)INT_ARG(1);
 | 
						|
 | 
						|
    REQUIRE_TRUE(x->rankOf() == 4, 0, "CUSTOM_OP fused_batch_norm: the rank of input x array must be equal to 4, but got %i instead !", x->rankOf());
 | 
						|
 | 
						|
    int bS = x->sizeAt(0);              // batch size
 | 
						|
    int iH, iW, iD;                     // input height, input width, input depth(number of channels)
 | 
						|
    if(dataFormat) {
 | 
						|
        iD = x->sizeAt(1);
 | 
						|
        iH = x->sizeAt(2);
 | 
						|
        iW = x->sizeAt(3);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        iD = x->sizeAt(3);
 | 
						|
        iH = x->sizeAt(1);
 | 
						|
        iW = x->sizeAt(2);
 | 
						|
    }
 | 
						|
 | 
						|
    REQUIRE_TRUE(scale->rankOf() == 1  && scale->sizeAt(0)  == iD, 0, "CUSTOM_OP fused_batch_norm: wrong shape of input scale array, expected is [%i], but got %s instead", iD, ShapeUtils::shapeAsString(scale).c_str());
 | 
						|
    REQUIRE_TRUE(offset->rankOf() == 1 && offset->sizeAt(0) == iD, 0, "CUSTOM_OP fused_batch_norm: wrong shape of input offset array, expected is [%i], but got %s instead", iD, ShapeUtils::shapeAsString(offset).c_str());
 | 
						|
 | 
						|
    NDArray *mean(nullptr), *variance(nullptr);
 | 
						|
    if(!isTraining){
 | 
						|
        mean     = INPUT_VARIABLE(3);
 | 
						|
        variance = INPUT_VARIABLE(4);
 | 
						|
        REQUIRE_TRUE(mean->rankOf() == 1     && mean->sizeAt(0) == iD,     0, "CUSTOM_OP fused_batch_norm: wrong shape of input mean array, expected is [%i], but got %s instead", iD, ShapeUtils::shapeAsString(mean).c_str());
 | 
						|
        REQUIRE_TRUE(variance->rankOf() == 1 && variance->sizeAt(0) == iD, 0, "CUSTOM_OP fused_batch_norm: wrong shape of input variance array, expected is [%i], but got %s instead", iD, ShapeUtils::shapeAsString(variance).c_str());
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        //REQUIRE_TRUE(block.width() == 3, 0, "CUSTOM_OP fused_batch_norm: when isTraining=true then number of input arrays must be equal to 3, but got %i instead !", block.width());
 | 
						|
        std::vector<Nd4jLong> shape = {iD};
 | 
						|
        mean = NDArrayFactory::create_(scale->ordering(), shape, scale->dataType(), block.launchContext());
 | 
						|
        variance = NDArrayFactory::create_(scale->ordering(), shape, scale->dataType(), block.launchContext());
 | 
						|
    }
 | 
						|
 | 
						|
    // FIXME: double?
 | 
						|
    double epsilon;
 | 
						|
    if(block.getTArguments()->size() > 0)
 | 
						|
        epsilon = T_ARG(0) > 1.001e-5 ? T_ARG(0) : 1.001e-5;
 | 
						|
    else
 | 
						|
        epsilon = 0.001;
 | 
						|
 | 
						|
    const int restSize = x->lengthOf() / iD;
 | 
						|
    auto xAffected = NDArrayFactory::create(x->ordering(), {restSize, iD}, mean->dataType(), block.launchContext());
 | 
						|
    xAffected.assign(x);
 | 
						|
 | 
						|
    const int restSizeMinusOne = (restSize > 1) ? (restSize - 1) : 1;
 | 
						|
    // FIXME: float?
 | 
						|
    const double restSizeInv = 1.0 / restSize;
 | 
						|
    const double restSizeAdjust = (double)restSize / restSizeMinusOne;
 | 
						|
 | 
						|
    if(isTraining) {
 | 
						|
        auto sum = xAffected.reduceAlongDimension(reduce::Sum, {0});
 | 
						|
        sum *= restSizeInv;
 | 
						|
        mean->assign(sum);
 | 
						|
        *batchMean = *mean;
 | 
						|
        //delete sum;
 | 
						|
    }
 | 
						|
    else
 | 
						|
        *batchMean = 0.;
 | 
						|
 | 
						|
    xAffected -= *mean;
 | 
						|
 | 
						|
    if(isTraining) {
 | 
						|
        int power = 2;
 | 
						|
        xAffected.applyScalar(scalar::Pow, power, xAffected);
 | 
						|
        auto sum = xAffected.reduceAlongDimension(reduce::Sum, {0});
 | 
						|
        sum *= restSizeInv;
 | 
						|
        variance->assign(sum);
 | 
						|
        *batchVar  = (*variance) * restSizeAdjust;
 | 
						|
        //delete sum;
 | 
						|
    }
 | 
						|
    else
 | 
						|
        *batchVar  = 0.;
 | 
						|
    xAffected *= (*variance + epsilon).transform(transform::RSqrt) * (*scale) + (*offset);
 | 
						|
    y->assign( xAffected );
 | 
						|
 | 
						|
    if(isTraining) {
 | 
						|
        delete mean;
 | 
						|
        delete variance;
 | 
						|
    }
 | 
						|
 | 
						|
    return Status::OK();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
DECLARE_SHAPE_FN(fused_batch_norm) {
 | 
						|
    auto xShapeInfo     = inputShape->at(0);
 | 
						|
    auto scaleShapeInfo = inputShape->at(1);
 | 
						|
 | 
						|
    const bool dataFormat = (bool)INT_ARG(0);               // 0->NHWC, 1->NCHW
 | 
						|
    const int iD = dataFormat ? xShapeInfo[2] : xShapeInfo[4];
 | 
						|
 | 
						|
    REQUIRE_TRUE(scaleShapeInfo[0] == 1  && scaleShapeInfo[1] == iD, 0, "CUSTOM_OP fused_batch_norm: wrong shape of input scale array, expected is [%i], but got %s instead", iD, ShapeUtils::shapeAsString(scaleShapeInfo).c_str());
 | 
						|
 | 
						|
    Nd4jLong* outShapeInfo(nullptr), *batchMeanShapeInfo(nullptr), *batchVarShapeInfo(nullptr);
 | 
						|
 | 
						|
    COPY_SHAPE(xShapeInfo, outShapeInfo);
 | 
						|
    COPY_SHAPE(scaleShapeInfo, batchMeanShapeInfo);
 | 
						|
    COPY_SHAPE(scaleShapeInfo, batchVarShapeInfo);
 | 
						|
 | 
						|
    return SHAPELIST(CONSTANT(outShapeInfo), CONSTANT(batchMeanShapeInfo), CONSTANT(batchVarShapeInfo));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
}
 | 
						|
}
 | 
						|
 | 
						|
#endif |